Piecing together the Puzzle of Basal Forebrain Anatomy

  • Lennart Heimer
  • George F. Alheid
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


The basal forebrain contains a seemingly heterogeneous collection of structures including nucleus accumbens, olfactory tubercle, septum, diagonal band nuclei, bed nucleus of stria terminalis, substantia innominata, olfactory cortex, hippocampus formation and amygdaloid body. It is also traversed by a number of large fiber tracts, e.g. fornix, stria terminalis, diagonal band of Broca, medial forebrain bundle, inferior thalamic peduncle, and ventral amygdalofugal pathway, to which the various basal forebrain structures contribute axons in order to establish connections between themselves and with other parts of the brain. Hypothalamus, the main diencephalic component of the basal forebrain, is one such region closely related to many of the telencephalic basal forebrain structures and fiber tracts. These intimate relations to the hypothalamus provided much of the anatomical rationale to bring the above-mentioned basal forebrain structures together as integral parts of the “limbic system”. This has contributed to the popular view of forebrain organization in which the neocortex is related to the basal ganglia or the “extrapyramidal motor system” through the well-known cortico-striato-pallidal pathways, while so-called limbic structures, e.g. septum, nucleus accumbens, amygdaloid body and allocortical areas like hippocampus and olfactory cortex are characterized foremost by their relation to the hypothalamus, a major regulator of autonomic and endocrine functions.


Nucleus Accumbens Basal Forebrain Ventral Striatum Anterior Commissure Stria Terminalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggleton, J.P., 1985, A description of intra-amygdaloid connections in old world monkeys, Exp. Brain Res., 515–526.Google Scholar
  2. Alexander, G.E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Ann. Rev. Neurosci., 9: 357–381.PubMedCrossRefGoogle Scholar
  3. Albert, D.J., Petrovic, D.M., Walsh, M.L., and Jonik, R.H., 1989, Medial accumbens lesions attenuate testosterone-dependent aggression in male rats, Physiol. Behav., 46: 625–631.PubMedCrossRefGoogle Scholar
  4. Alheid, G.F., Haselton, C.L., and Heimer, L., 1989a, Accumbens projections to dorsal and ventral pallidum and to the extended amygdala in the monkey using PHA-L, Soc. Neurosci. Abstr., 15: 904.Google Scholar
  5. Alheid, G.F. and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders; the striatopallidal, amygdaloid, and corticopetal components of substantia innominata, Neurosci., 27: 1–39.CrossRefGoogle Scholar
  6. Alheid, G.F., Heimer, L., and Switzer, R.C., 1990, The basal ganglia, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 483–582.Google Scholar
  7. Alheid, G.F., Van Hoesen, G., and Heimer, L., 1989b, Functional neuroanatomy, in: “Comprehensive Textbook of Psychiatry,” H.I. Kaplan and J. Sadock, ed., Williams &Wilkins, Baltimore, pp. 26–45.Google Scholar
  8. Amaral, D.G., Avendano, C., and Benoit, R., 1989, Distribution of somatostatin-like immunoreactivity in the monkey amygdala, J. Comp. Neurol., 284: 294–313.PubMedCrossRefGoogle Scholar
  9. Amaral, D.G. and Kurtz, J., 1985, An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation in the rat, J. Comp. Neurol., 240: 37–59.PubMedCrossRefGoogle Scholar
  10. Bartus, R.T., Dean III R.L., Beer, B., Lippa A.S., 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417.PubMedCrossRefGoogle Scholar
  11. Beccari, M., 1910, II lobo parolfattoro nei mammiferi, Arch. Ital. Anat. Embrvol., 9: 173–220.Google Scholar
  12. Beccari, M., 1911, La sostanza perforata anteriore e i suoi rapporti col rinencefalo nel cerbello dell’uomo. Arch. Ital. Anat. Embrvol., 10: 261–328.Google Scholar
  13. Beckstead, R.M., Domesick, V.B., and Nauta, W.J.H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res., 175: 191–217.PubMedCrossRefGoogle Scholar
  14. Biesold, D., Inanami, O., Sato, A., and Sato, Y., 1989, Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats, Neurosci. Lett., 98: 39–44.PubMedCrossRefGoogle Scholar
  15. Bigl, v., Woolf, N.J., and Butcher, L.L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull., 8: 727–749.PubMedCrossRefGoogle Scholar
  16. Blackstad, T., 1967, Cortical gray matter; a correlation of light and electron microscopic data, in: “The Neuron,” H. Hyden, ed., Elsevier, Amsterdam, pp. 49–118.Google Scholar
  17. Brodal, A., 1969. Neurological Anatomy. Oxford University Press, London.Google Scholar
  18. Butcher, L.L. and Woolf, N.J., 1986, Central cholinergic systems; synopsis of anatomy and overview of physiology and pathology, in: “The Biological Substrates of Alzheimer’s Disease,” A.B. Scheibel and A.F. Wechsler, eds., Academic Press, New York, pp. 73–86.Google Scholar
  19. Caffé, A.R., Van Ryen, P.C., Van der Woude, T.P., and Van Leeuwen, F.W., 1989, Vasopressin and oxytocin systems in the brain and upper spinal cord of macaca fascicularis, J. Comp. Neurol., 287: 302–325.PubMedCrossRefGoogle Scholar
  20. Carlsen, J. and Heimer, L., 1988, The basolateral amygdaloid complex as a cortical-like structure. Brain Res., 441: 377–380.PubMedCrossRefGoogle Scholar
  21. Carlsen, J., Zäborszky, L., and Heimer, L., 1985, Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex; a combined retrograde fluorescent and immunohistochemical study, J. Comp. Neurol., 234: 155–167.PubMedCrossRefGoogle Scholar
  22. Chang, H.T., 1989, Noradrenergic innervation of the substantia innominata; a light and electron microscopic analysis of dopamine ß-hydroxylase immunoreactive elements in the rat, Exp. Neurol., 104: 101–112.PubMedCrossRefGoogle Scholar
  23. Chang, H.T. and Kuo, H., 1989, Calcitonin gene-related peptides (CGRP) in the rat substantia innominata and globus pallidus; a light and electron microscopic immunocytochemical study, Brain Res., 495: 167–172.PubMedCrossRefGoogle Scholar
  24. Chronister, R.B., Sikes, R.W., Trow, T.W., and DeFrance, J.F., 1981, The Organization of Nucleus Accumbens, in: “The Neurobiology of the Nucleus Accumbens,” R.B. Chronister and J.F. De France, eds., Haer Institute for Electrophysiological Research, Maine, pp. 97–146.Google Scholar
  25. Cools, A.R., Lohman, A.H.M., and Van der Bereken, eds., 1977, Psychobiology of the Striatum, Elsevier, Amsterdam.Google Scholar
  26. Crosby, E.C. and Humphrey, T., 1941, Studies of the vertebrate telencephalon, II, the nuclear pattern of the anterior olfactory nucleus, tuber- culum olfactorium, and the amygdaloid complex in adult man, J. Comp. Neurol., 71: 121–213.CrossRefGoogle Scholar
  27. Danscher, G., 1982, Exogenous selenium in the brain; a histochemical technique for light and electron microscopical localization of catalytic selenium bonds, Histochem., 76: 281–293.CrossRefGoogle Scholar
  28. Davis, P. and Maloney, A.J., 1976, Selective loss of cholinergic neurons in Alzheimer’s disease. Lancet . 2: 1403. CrossRefGoogle Scholar
  29. Delacour, J., Houcine, O., and Costa, J.C., 1990, Evidence for a cholinergic mechanism of “learned” changes in the responses of barrel field neurons of the awake and undrugged rat, Neurosci., 34: 1–8.CrossRefGoogle Scholar
  30. de Olmos, J.S., 1972, The amygdaloid projection field in the rat as studied with the cupric-silver method, in “The Neurobiology of the Amygdala,” B.E. Elefteriou, ed., Plenum, New York, pp. 145–204.Google Scholar
  31. de Olmos, J.S., 1990, The amygdala, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, New York, pp. 583–710.Google Scholar
  32. de Olmos, J.S., Alheid, G.F., and Beltramino, C.A., 1985, Amygdala, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, New York, pp. 223–334.Google Scholar
  33. Dejerine, J.J., 1901, Anatomie des centres nerveux (2 Vols.), Rueff, Paris.Google Scholar
  34. Divac, I., 1975, Magnocellular nuclei of the basal forebrain project to neocortex, brainstem and olfactory bulb; review of some functional correlates, Brain Res., 93: 385–398.PubMedCrossRefGoogle Scholar
  35. Divac, I. and Oberg, R.G.E., eds., 1979a, The Neostriatum, Pergamon Press, Oxford.Google Scholar
  36. Divac, I. and Oberg R.G.E., 1979b, Current conceptions of neostriatal functions history and an evaluation, in: “The Neostriatum (I),” I. Divac and R.G.E. Oberg, eds., Pergamon Press, Oxford, pp. 215–230,.Google Scholar
  37. Ericson, H., Blomqvist, A., and Köhler, C., 1989, Origin of neuronal inputs to the tuberomamiHary nucleus of the rat brain, in: “Neurons of the Tuberomamillary Nucleus,” Ericson H. Doctoral dissertation, Uppsala University, Sweden. (Acta Universitatis Uppsaliensis 208.)Google Scholar
  38. Evered, D. and O’Conner, M., 1984, Functions of the Basal Ganglia, Pitman, London (Ciba Symposium 107).Google Scholar
  39. Everitt, B.J., Cador, M., andRobbins, T.W., 1989, Interactions between the amygdala and ventral striatum in stimulus-reward associations; studies using a second-order schedule of sexual reinforcement. Neurosci., 30: 63–75.CrossRefGoogle Scholar
  40. Everitt, B.J., Sirkiä, T.E., Roberts, A.C., Jones, G.H., andRobbins, T.W. 1988, Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix Jacchus, J. Comp. Neurol., 271: 533–558.PubMedCrossRefGoogle Scholar
  41. Fallon, J.H., 1983, The islands of Calleja complex of rat basal forebrain, II, Connections of medium and large sized cells, Brain Res. Bull., 10: 775–793.PubMedCrossRefGoogle Scholar
  42. Farley, I.J. and Hornykiewicz, O., 1977, Noradrenaline distribution in subcortical areas of the human brain. Brain Res., 126: 53–62.PubMedCrossRefGoogle Scholar
  43. Fibiger, H.C. and Phillips, A.G., 1986, Reward, motivation, cognition; psychobiology of mesotelencephalic dopamine systems, in: “Handbook of Physiology”, Section 1, The Nervous System, Vol. 4, V.B. Mountcastle, F. Plum, S.R. Geiger, eds., American Physiological Society, Bethesda, pp. 647–674.Google Scholar
  44. Fisher, R.S., Buchwald, N.A., Hull, C.D., and Levine, M.S., 1988, GABA- ergic basal forebrain neurons project to the neocortex; the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. Comp. Neurol., 272: 489–502.PubMedCrossRefGoogle Scholar
  45. Freund-Mercier, M.J., Dietl, M.M., Stoeckel, M.E., Palacios, J.M., and Richard, P.H., 1988, Quantitative autoradiographic mapping of neurohypophysial hormone binding sites in the rat forebrain and pituitary gland, II, Comparative study on the Long-Evans and Brattleboro strains, Neurosci., 26: 273–281.CrossRefGoogle Scholar
  46. Garcia-Rill, E., Skinner, R.D., Gilmore, S.A., and Owings, R., 1983, Connections of the mesencephalic locomotor region (MLR), II, Afferents and efferents, Brain Res. Bull., 10: 63–71.PubMedCrossRefGoogle Scholar
  47. Geeraedts, L.M.G., Nieuwenhuys, R., and Veening, J.G., 1990, Medial forebrain bundle of the rat, III, Cytoarchitecture of the rostral (telen- cephalic) part of the medial forebrain bundle bed nucleus, J. Comp. Neurol., 294: 507–536.PubMedCrossRefGoogle Scholar
  48. Gerfen, C.R., 1984, The neostriatal mosaic: compartmentalization of corti- costriatal input and striatonigral output system. Nature. 311: 461–464.PubMedCrossRefGoogle Scholar
  49. Gerfen, C.R., 1985, The neostriatal mosaic, I, Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol., 236: 454–476.PubMedCrossRefGoogle Scholar
  50. Gloor, P., 1955, Electrophysiological studies on the connections of the amygdaloid nucleus in the cat, I, The neuronal organization of the amygdaloid projection system, EEG Clin. Neurophvsiol., 7: 223–242.CrossRefGoogle Scholar
  51. Gray, T.S., 1987, Autonomic neuropeptide connections of the amygdala, in: “Hans Selye Symposium: Neuropeptides and Stress,” Y. Tache, J.E. Mor- ley, and M.R. Brown, eds., Springer-Verlag, New York, pp. 92–105.Google Scholar
  52. Gray, T.S. and Magnuson, D.J., 1987, Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat, J. Comp. Neurol., 262: 365–374.PubMedCrossRefGoogle Scholar
  53. Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci., 13: 244–254.PubMedCrossRefGoogle Scholar
  54. Graybiel, A.M., Ragsdale, C.W. Jr., Moon Edley, S., 1979, Compartments in the striatum of the cat observed by retrograde cell-labeling, Brain Res., 34: 189–195.Google Scholar
  55. Groenewegen, H.J., 1982, Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal- prefrontal topography, Neurosci., 24: 379–431.CrossRefGoogle Scholar
  56. Groenewegen, H.J. and Berendse, H.W., 1990, Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat, J. Comp. Neurol., 294: 607–622.PubMedCrossRefGoogle Scholar
  57. Groenewegen, H.J., Berendse, H.W., Meredith, G.E., Haber, S.N., Voorn, P., Wolters, J.G., and Lohman, A.H.M., 1991, Functional anatomy of the ventral limbic-innervated striatum, in: “The Mesolimbic Dopamine System: From Motivation to Action,” P. Willner and J. Scheel-Kruger, eds., John Wiley and Sons Ltd., England, Chichester, pp. 19–59.Google Scholar
  58. Groenewegen, H.J., Meredith, G.E., Berendse, H.W., Voorn, P., and Wolters, J.G., 1989, The compartmental organization of the ventral striatum in the rat, in: “Neural Mechanisms in Disorders of Movement,” A.R. Crossman and M.A. Sambrook, eds., Libbey and Co., London, pp. 45–54.Google Scholar
  59. Groenewegen, H.J., Russchen, F.T., 1984, Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic and mesencephalic structures; a tracing and immunohistochemical study in the cat, J. Comp. Neurol., 223: 347–367.PubMedCrossRefGoogle Scholar
  60. Grove, E.A., 1988a, Neural associations of the substantia innominata in the rat; afferent connections, J. Comp. Neurol., 277: 315–346.PubMedCrossRefGoogle Scholar
  61. Grove, E.A., 1988b, Efferent connections of the substantia innominata in the rat, J. Comp. Neurol., 277: 347–364.PubMedCrossRefGoogle Scholar
  62. Grove, E.A., Domesick, V.B., and Nauta, W.J., 1986, Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat; a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L), Brain Res., 367: 379–384.PubMedCrossRefGoogle Scholar
  63. Grove, E.A. and Nauta, W.J.H., 1984, Light microscopic evidence for striatal and amygdaloid input to cholinergic cell group CH4 in the rat. Soc. Neurosci. Abstr., 10: 7.Google Scholar
  64. Haber, S.N., 1987, Anatomical relationship between the basal ganglia and the basal nucleus of Meynert in human and monkey forebrain, Proc. Natl. Acad. Sei., 84: 1408–1412.CrossRefGoogle Scholar
  65. Haber, S.N. and Eide, R., 1981, Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus, Neurosci., 6: 1291–1297.CrossRefGoogle Scholar
  66. Haber, S.N., Groenewegen, H.J., Grove, E.A., and Nauta, W.J.H., 1985, Efferent connections of the ventral pallidum; evidence of a dual stria- topallidofugal pathway, J. Comp. Neurol., 235: 322–335.PubMedCrossRefGoogle Scholar
  67. Haber, S.N., Lind, E., Klein, C., and Groenewegen, H.J., 1990, Topographic organization of the ventral striatal efferent projections in the Rhesus monkey; an anterograde tracing study, J. Comp. Neurol., 293: 282–298.PubMedCrossRefGoogle Scholar
  68. Haber, S.N. and Nauta, W.J.H., 1983, Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry, Neurosci., 9: 245–260.CrossRefGoogle Scholar
  69. Haber, S.N. and Watson, S.J., 1985, The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain, Neurosci., 14: 1011–1024.CrossRefGoogle Scholar
  70. Haberly, L.B. and Price, J.L., 1978, Associational and commissural fiber systems of the olfactory cortex of the rat, I, Systems arising in the piriform cortex and adjacent areas, J. Comp. Neurol., 178: 711–740.PubMedCrossRefGoogle Scholar
  71. Hall, E., 1972, The amygdala of the cat; a Golgi study, Z. Zellorsch. 134: 439–458.CrossRefGoogle Scholar
  72. Hallanger, A.E., Levey, A.I., Henry, J.L., Rye, D.B., and Wainer, B.H., 1987, The origins of cholinergic and other subcortical afferents to the thalamus in the rat, J. Comp. Neurol., 262: 105–124.PubMedCrossRefGoogle Scholar
  73. Hallström, A., Sato, A., Sato, Y., and Lingerstedt, U., 1990, Effect of stimulation of the nucleus basalis of Meynert on blood flow and extracellular lactate in the cerebral cortex with special reference to the effect of noxious stimulation of skin and hypoxia, Neurosci. Lett., 116: 227–232.PubMedCrossRefGoogle Scholar
  74. Heimer, L., 1972, The olfactory connections of the diencephalon in the rat. Brain Behav. Evol., 6: 484–523.PubMedCrossRefGoogle Scholar
  75. Heimer, L., 1978, The olfactory cortex and the ventral striatum, in: “Limbic Mechanisms,” K.E. Livingston and O. Hornykiewicz, eds., Plenum, New York, pp. 95–187.Google Scholar
  76. Heimer, L., Alheid, G.F., and Zaborszky, L., 1983, Microinjections of retrograde fluorescent tracers in the ventral pallidum of rat label neurons at the medial edge of the subthalamic nucleus. Soc. for Neurosci. Abstr., 9: 1230.Google Scholar
  77. Heimer, L., Alheid, G.F., and Zaborszky, L., 1985, The basal ganglia, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, Sydney, pp. 37–74.Google Scholar
  78. Heimer, L., de Olmos, J.S., Alheid, G.F., and Zaborszky, L., 1991a, “Perestroika” in the basal forebrain; opening the borders between neurology and psychiatry, in: “Role of the Forebrain in Sensation and Behaviour”, G. Holstege, ed., pp. 109–165.CrossRefGoogle Scholar
  79. Heimer, L., Switzer, R.D., and Van Hoesen, G.W., 1982, Ventral striatum and ventral pallidum; components of the motor system? Trends in Neurosci., 5: 83–87.CrossRefGoogle Scholar
  80. Heimer, L. and Wilson, R.D., 1975, The subcortical projections of allocortex; similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex, in: “Golgi Centennial Symposium Proceedings,” M. Santini, ed., Raven Press, New York, pp. 177–193.Google Scholar
  81. Heimer, L., Zaborszky, L., Zahm, D.S., and Alheid, G.F., 1987, The ventral striatopallidothalamic projection. I. The striatopallidal link originating in striatal parts of the olfactory tubercle. J. Comp. Neurol., 255: 571–591.PubMedCrossRefGoogle Scholar
  82. Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W., and Wohltmann, C., 1991b, Specificity in the projection patterns of accumbal core and shell in the rat, Neurosci., (in press).Google Scholar
  83. Heimer, L., Zahm, D.S., and Schmued, L.C., 1990, The basal forebrain projection to the region of the nuclei gemini in the rat; a combined light and electron microscopic study employing horseradish peroxidase, fluorescent tracers and phaseolus vulgaris-leucoagglutinin, Neurosci., 34(3): 707–731.CrossRefGoogle Scholar
  84. Herkenham, M., Moon Edley, S., and Stuart, J., 1984, Cell clusters in the nucleus accumbens of the rat and the mosaic relationship of opiate receptors, acetylcholinesterase and subcortical afferent terminations, Neurosci., 11: 561–593.CrossRefGoogle Scholar
  85. Herrick, C.J., 1910, The morphology of the forebrain in amphibia and rep- tilia, J. Comp. Neurol. and Psychol., 20: 413–546.CrossRefGoogle Scholar
  86. Holstege, G., 1990, Subcortical limbic system projections to caudal brainstem and spinal cord, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 261–286.Google Scholar
  87. Holstege, G., Meiners, L., and Tan, K., 1985, Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat, Expl. Brain Res., 58: 379–391.CrossRefGoogle Scholar
  88. Insel, T.R., Miller, L.P., and Gelhard, R.E., 1990, The ontogeny of excitatory amino acid receptors in rat forebrain, I, N-methyl-D-aspartate and quisqualate receptors, Neurosci., 35: 31–43.CrossRefGoogle Scholar
  89. Jackson, A. and Crossman, A.R., 1981, Basal ganglia and other afferent projections to the peribrachial region in the rat; a study using retrograde and anterograde transport o£ horseradish peroxidase, Neurosci., 6: 1537–1549.CrossRefGoogle Scholar
  90. Johnston, J.B., 1923, Further contributions to the study of the evolution of the forebrain, J. Comp. Neurol., 35: 337–481.CrossRefGoogle Scholar
  91. Kaada, B., 1960, Cingulate, posterior orbital, anterior insular and temporal pole cortex, in: J. Field, H.W. Magoun, V.E. Hall (eds), “Handbook of Physiology”, Section 1. Neurophysiology, Vol. II. American Physiological Society, Washington, D.C., pp 1345–1372.Google Scholar
  92. Kelley, A.E., Domesick, V.B., and Nauta, W.J.H., 1982, The amygdalostriatal projection in the rat; an anatomical study by anterograde and retrograde tracing methods, Neurosci., 7: 615–630.CrossRefGoogle Scholar
  93. Koikegami, H., Hirata, Y., and Oguma, J., 1967, Studies on the paralimbic brain structures, I, definition and delimitation of the paralimbic brain structures and some experiments on the nucleus accumbens, Folia Psychiatica et Neurologica Japonica. 21: 151–180.Google Scholar
  94. Krieger, N.R., 1981, Neurochemistry of the olfactory tubercle, in: “Biochemistry of Taste and Olfaction,” Cagan R.H. and Kare M.R. eds., Academic Press, New York, pp. 417–441.Google Scholar
  95. Köhler, C., Chan-Palay, V., and Wu, J.Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol., 169: 41–44.PubMedCrossRefGoogle Scholar
  96. Köhler, C., Haglund, L., and Swanson, L.W., 1984, A diffuse aMSH-immuno-reactive projection to the hippocampus and spinal cord from individual neurons in the lateral hypothalamic area and zone incerta, J. Comp. Neurol., 223: 501–514.PubMedCrossRefGoogle Scholar
  97. Kohler, C. and Swanson, L.W., 1984, Acetylcholinesterase-containing cells in the lateral hypothalamic area are immunoreactive for alpha-melanocyte stimulating hormone (alpha-MSH) and have cortical projections in the rat, Neurosci. Lett., 49: 39–43.PubMedCrossRefGoogle Scholar
  98. Köhler, C., Swanson, L.W., Haglund, L., and Wu, J.Y., 1985, The cytoarchi- tecture, histochemistry and projections of the tuberomammillary nucleus in the rat, Neurosci., 16: 85–110.CrossRefGoogle Scholar
  99. Krettek, J.E. and Price, J.L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat, J. Comp. Neurol., 178: 225–254.PubMedCrossRefGoogle Scholar
  100. Lauer, E.W., 1945, The nuclear pattern and fiber connections of certain basal telencephalic centers in the macaque, J. Comp. Neurol., 183: 785–816.Google Scholar
  101. LeDoux, J.E., Ruggiero, D.A., and Reis, D.J., 1985, Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat, J. Comp. Neurol., 242: 182–213.PubMedCrossRefGoogle Scholar
  102. Lesur, A., Gaspar, P., Alvarez, Z., and Berger, B., 1989, Chemoanatomic compartments in the human bed nucleus of the stria terminalis, Neurosci., 32: 181–194.CrossRefGoogle Scholar
  103. Levey, A.E., Wainer, B.H., Mufson, E.J., and Mesulam, M.M., 1983, Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum, Neurosci., 9: 9–22.CrossRefGoogle Scholar
  104. Lind, R.W., Swanson, L.W., and Ganten, D., 1985, Organization of Angiotensin II immunoreactive cells and fibers in the rat central nervous system; an immunohistochemical study, Neuroendocrin., 40: 2–24.CrossRefGoogle Scholar
  105. Luskin, M.B., and Price, J.L., 1983, The topographic organization of asso- ciational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb, J. Comp. Neurol., 216: 264–291.PubMedCrossRefGoogle Scholar
  106. Lynd, E., Klein, C., Groenewegen, H.J., and Haber, S.N., 1988, Organization of the efferent projections from the primate ventromedial striatum, Soc. Neurosci. Abstr., 14: 156.Google Scholar
  107. Ma, W., Höhmann, C.F., Coyle, J.T., and Juliano, S.L., 1989, Lesions of the basal forebrain alter stimulus-evoked metabolic activity in mouse somatosensory cortex, J. Comp. Neurol., 288: 414–427.PubMedCrossRefGoogle Scholar
  108. Macchi, G., 1951, The ontogenetic development of the olfactory telencephalon in man, J. Comp. Neurol., 95: 245–305.PubMedCrossRefGoogle Scholar
  109. Maeda, M., Nakai, M., Krieger, A.J., and Sapru, H.N., 1990, Chemical stimulation of the nucleus tractus solitarii decreases cerebral blood flow in anesthetized rats, Brain Res., 520: 255–261.PubMedCrossRefGoogle Scholar
  110. Mai, J.K., Stephens, P.H., Hope, A., and Cuello, A.C., 1986, Substance P in the human brain, Neurosci., 17: 709–739.CrossRefGoogle Scholar
  111. Martin, L.J., Koliatsos, V.E., Struble, R.G., Powers, R.E., and Price, D.L., 1988, Chemoarchitectonic patterns of peptides in human basal forebrain; evidence for a system comprising the bed nucleus, substantia innominata, and central amygdala, Soc. Neurosci. Abstr., 14: 671.Google Scholar
  112. Matelli, M., Luppino, G., Fitzpatrick, D., and Diamond, I.T., 1988, The pulvinar nucleus of Tupaia; comparative study of its connections with the superior coliculus, the neocortex, and the corpus striatum, in: “Cellular Thalamic Mechanisms”, M. Bentivolio and R. Spreafico (eds.), Elsevier Science Publishers, Amsterdam, pp. 207–220.Google Scholar
  113. Matthysse, S., 1973, Antipsychotic drug actions; a clue to the neuropathology of schizophrenia? Federation Proc., 32: 200–205.Google Scholar
  114. McDonald, A.J., 1984, Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat, J. Comp. Neurol., 222: 589–606.PubMedCrossRefGoogle Scholar
  115. McDonald, A.J., 1991, Cell types and intrinsic connections of the amygdala, in: “The Amygdala,” J.P. Aggleton, ed., Wiley, New York, (in press).Google Scholar
  116. McKenzie, J.S., Kemm, R.E., and Wilcock, L.N., eds., 1984, The Basal Ganglia, Plenum Press, New York.Google Scholar
  117. Melander, T., Staines, W.A., Hökfelt, T., Rokaeus, A., Eckenstein, F., Salvaterra, P.M., and Wainer, B.H., 1985, Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat, Brain Res., 360: 130–138.PubMedCrossRefGoogle Scholar
  118. Mesulam, M.M., and Geula, C., 1988, Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol., 275: 216–240.PubMedCrossRefGoogle Scholar
  119. Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H., 1983a, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in theRhesus monkey, J. Comp. Neurol., 214: 170–197.PubMedCrossRefGoogle Scholar
  120. Mesulam, M.M., Mufson, E.J., and Wainer, B.H., 1986, Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque; concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for HRP, Brain Res., 367: 301–308.PubMedCrossRefGoogle Scholar
  121. Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.J., 1983b, Central cholinergic pathways in the rat; an overview based on an alternative nomenclature, Neurosci., 10: 1185–1201.CrossRefGoogle Scholar
  122. Millhouse, O.E. and De Olmos, J., 1983, Neuronal configurations in lateral and basolateral amygdala, Neurosci., 10: 1269–1300.CrossRefGoogle Scholar
  123. Millhouse, O.E. and Heimer, L., 1984, Cell configurations in the olfactory tubercle of the rat, J. Comp. Neurol., 265: 1–24.CrossRefGoogle Scholar
  124. Miodonski, R., 1967, Myeloarchitectonics and connections of substantia innominata in the dog brain, Acta. Biologiae Expert. (Warszawa), 27: 61–84.Google Scholar
  125. Mishkin, M., Malamut, B., and Bachevalier, J., 1984, Memories and habits; two neural systems, in: “Neurobiology of Learning and Memory,” G. Lynch, J.L. McGaugh, and N.M. Weinberger, eds., Guildford Press, New York, pp. 65–77.Google Scholar
  126. Mizuno, N., Takahashi, O., Satoda, T., and Matsushima, R., 1985, Amygdalo- spinal projections in the macaque monkey, Neurosci. Lett., 53: 327–330.PubMedCrossRefGoogle Scholar
  127. Mogenson, G.J., 1984, Limbic-motor integration with emphasis on initiation of exploratory and goal-directed locomotion, in: “Modulation of Sensorimotor Activity During Alternations in Behavioral States,” Alan Liss, New York, pp. 121–137.Google Scholar
  128. Mogenson, G.J., 1987, Limbic motor integration, Progr. Psychobiol., 12: 117–170.Google Scholar
  129. Mogenson, G.J., Jones, D.L., and Yim, C.Y., 1980, From motivation to action; functional interface between the limbic system and the motor system, Progr. Neurobiol., 14: 69–97.CrossRefGoogle Scholar
  130. Mogenson, G.J., Swanson, L.W., and Wu, M., 1983, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area; an anatomical and electrophysiological investigation in the rat, J. Neurosci., 3: 189–202.PubMedGoogle Scholar
  131. Mori, S., Ueda, S., Yamad, H., Takino, T., and Sano, Y., 1985, Immuno- histochemical demonstration of serotonin nerve fibers in the corpus striatum of the rat, cat, and monkey, Anat. Embryo1. (Berl.), 173: 1–5.CrossRefGoogle Scholar
  132. Mugnaini, E. and Oertel, W.H., 1985, Atlas of the distribution of GABAer- gic neurons and terminals in the rat CNS as revealed by GAD immunohisto- chemistry, in: “Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS,” A. Björklund and T. Hökfelt, eds., Elsevier, Amsterdam, pp. 436–595.Google Scholar
  133. Nakano, Y., Oomura, Y., Leonard, L., Nishino, H., Aou, S., Yamamoto, T., and Aoyagi K., 1986, Feeding-related activity of glucose and morphine- sensitive neurons in the monkey amygdala, Brain Res., 399: 167–172.PubMedCrossRefGoogle Scholar
  134. Nauta, W.J.H. and Domesick, V.B., 1978, Crossroads of limbic and striatal circuitry; hypothalmo-nigral connections, in: “Limbic Mechanisms: The Continuing Evolution of the Limbic System Concept,” Livingston K.E. and O. Hornykiewicz, eds., pp. 75–93.Google Scholar
  135. Nauta, W.J.H. and Domesick, V.B., 1984, Afferent and efferent relationships of the basal ganglia, in: “Functions of the Basal Ganglia,” D. Evered and M. O’Conner, eds., (Ciba Foundation Symposium 107), Pitman, London, pp. 3–23.Google Scholar
  136. Nauta, W.J.H., Smith G.P., Faull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci., 3: 385–401.CrossRefGoogle Scholar
  137. Newman, R. and Winans, S.S., 1980, An experimental study of the ventral striatum of the golden hamster, II, Neuronal connections of the olfactory tubercle, J. Comp. Neurol., 191: 193–212.PubMedCrossRefGoogle Scholar
  138. Nielsen, E.B. and Scheel-Krüger, J., 1986, Cueing effects of amphetamine and LSD; elicitation by direct microinjection of the drugs into the nucleus accumbens, Eur. J. Pharmacol., 125: 85–92.PubMedCrossRefGoogle Scholar
  139. Nishijo, H. and Ono, T., Nishino, H., 1988, Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance, J. Neurosci., 8: 3570–3583.PubMedGoogle Scholar
  140. Parent, A., 1986, Comparative Neurobiology of the Basal Ganglia, John Wiley and Sons, New York.Google Scholar
  141. Parent, A., Paré, D., Smith, Y., and Steriade, M., 1988, Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys, J. Comp. Neurol., 277: 281–391.PubMedCrossRefGoogle Scholar
  142. Pearson, R.C.A., Gatter, K.C., Brodal, P., and Powell, T.P.S., 1983, The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res., 259: 132–136.PubMedCrossRefGoogle Scholar
  143. Penney, J.B. and Young, A.B., 1983, Speculations on the functional anatomy of basal ganglia disorders, Ann. Rev. Neurosci., 6: 73–94.PubMedCrossRefGoogle Scholar
  144. Phelps, P.E. and Vaughn, J.E., 1986, Immunocytochemical localization of choline acetyltransferase in rat ventral striatum; a light and electron microscopic study, J. Neurocytol., 15: 595–617.PubMedCrossRefGoogle Scholar
  145. Phillips, A.G. and Carr, G.D., 1987, Cognition and the basal ganglia; a possible substrate for procedural knowledge, Can. J. Neurol. Sei., 14: 381–385.Google Scholar
  146. Phillips, P.A., Abrahams, J.M., Kelly, J., Paxinos, G., Grzonka, Z., Mendelsohn, F.A.O., and Johnston,C.I., 1988, Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radio- iodinated VI receptor antagonist, Neurosci., 27: 749–761.CrossRefGoogle Scholar
  147. Pioro, E.P., Mai, J.K., and Cuello, A.C., 1990, Distribution of substance P-and enkephalin-immunoreactive neurons and fibers, in: “The Human Nervous System,” G. Paxinos, ed., Academic Press, San Diego, pp. 1051- 1094.Google Scholar
  148. Price, J.L. and Amaral, D.G., 1981, An autoradiographic study of the projections of the central nucleus of the monkey amygdala, J. Neurosci., 11: 1242–1259.Google Scholar
  149. Price, J.L., Russchen, F.T., and Amaral, D.G., 1987, The limbic region, II, The amygdaloid complex, in: “Handbook of Chemical Neuroanatomy,” A. Björklund, T. Hökfelt, and L.W. Swanson, eds., Elsevier, Amsterdam, pp. 279–388.Google Scholar
  150. Price, J.L., Slotnick, B.M., and Revial, M.-F., 1991, Olfactory projections to the hypothalamus, J. Comp. Neurol., in press.Google Scholar
  151. Ramon y Cajal, S., 1911, Histologie du système nerveux de I’homme et des vertèbrès (Part II), Maloine, Paris.Google Scholar
  152. Ribak, C.E. and Kramer III, W.G., 1982, Cholinergic neurons in the basal forebrain of the cat have direct projections to the sensorimotor cortex, Exper. Neurol., 75: 453–465.CrossRefGoogle Scholar
  153. Richardson, R.T. and DeLong, M., 1990, Context-dependent responses of primate nucleus basalis neurons in a Go/No-Go task, J. Neurosci., 10: 2528- 2540.Google Scholar
  154. Richardson, R.T., Mitchell, S.J., Baker, F.H., and DeLong, M.R., 1988, Responses of nucleus basalis of Meynert neurons in behaving monkeys, in: “Cellular Mechanisms of Conditioning and Behavioral Plasticity,” C.D. Woody, D.L. Alkon, and J.L. McGaugh, eds., Plenum, New York.Google Scholar
  155. Rolls, E.T., Sanghera, M.K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia inno- minata during feeding in the monkey, Brain Res., 16: 121–135.Google Scholar
  156. Roberts, G.W., Woodhams, P.L., Polak, J.M., and Crow, T.J., 1980, Distribution of neuropeptides in the limbic system of the rat; the amygdaloid complex, Neurosci., 7: 99–131.CrossRefGoogle Scholar
  157. Russchen, F.T., Bakst, I., Amaral, D.G., and Price, J.L., 1985, The amyg- dalostriatal projections in the monkey; an anterograde tracing study. Brain Res., 329: 241–257.PubMedCrossRefGoogle Scholar
  158. Russell, V.A., Allin, R., Lamm, M.C.L., and Taljaard, J.J.F., 1989, Increased dopamine D2 receptor-mediated inhibition of [lC]Acetylchol ine release in the dorsomedial part of the nucleus accumbens, Neurochem. Res., 14: 877–881.PubMedCrossRefGoogle Scholar
  159. Rye, D.B., Wainer, B.H., Mesulam, M.M., Mufson, E.J., and Saper, C.B., 1984, Cortical projections arising from the basal forebrain; a study of cholinergic and non-cholinergic components employing combined retrograde tracing and immunohistochemical localizations of choline acetyltransferase, Neurosci., 13: 627–643.CrossRefGoogle Scholar
  160. Sandler, M., Feuerstein, C., and Scatton, B., eds., 1987, Neurotransmitter Interactions in the Basal Ganglia, Raven, New York.Google Scholar
  161. Sandrew, B.B., Edwards, D.L., Poletti, C.E., andFoote, W.E., 1986, Amyg- dalo-spinal projections in the cat, Brain Res., 373: 235–239.PubMedCrossRefGoogle Scholar
  162. Saper, C.B., 1984, Organization of cerebral cortical afferent systems in the rat, II, Magnocellular basal nucleus, J. Comp. Neurol., 222: 313- 342.Google Scholar
  163. Saper, C.B., 1985, Organization of cerebral cortical afferent systems in the rat, II, Hypothalamocortical projections, J. Comp. Neurol., 237: 21- 46.Google Scholar
  164. Saper, C.B., 1987, Diffuse cortical projection systems; anatomical organization and role in cortical function, in: “Handbook of Physiology: The Nervous System,” V.B. Mountcastle, R. Plum, and S.R. Geiger, eds., American Physiological Society, Maryland, pp. 169–210.Google Scholar
  165. Schneider, J.S. and Lidsky, T.J., eds., 1986, Basal Ganglia and Behavior: Sensory Aspects of Motor Functioning, Hans Huber Publishers, New York.Google Scholar
  166. Schwaber, J.S., Kapp, B.S., Higgins, G.A., and Rapp, P.R,, 1982, Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus of the vagus, J. Neurosci., 2: 424–1438.Google Scholar
  167. Schwaber, J.S., Rogers, W.T., Satoh, K., and Fibiger, H.C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J. Comp. Neurol., 263: 309–325.PubMedCrossRefGoogle Scholar
  168. Scott, J.W. and Chafin, B.R., 1975, Origin of olfactory projections to lateral hypothalamus and nuclei gemini of the rat. Brain Res., 88: 64–6.PubMedCrossRefGoogle Scholar
  169. Scott, J.W. and Leonard, C.M., 1971, The olfactory connections of the lateral hypothalamus in the rat, mouse, and hamster, J. Comp. Neurol., 141: 331–344.PubMedCrossRefGoogle Scholar
  170. Scott, J.W. and Pfaffmann, C., 1967, Olfactory input to the hypothalamus; electrophysiological evidence, Science., 158: 1592–1594.PubMedCrossRefGoogle Scholar
  171. Scott, J.W. and Pfaffmann, C., 1972, Characteristics of responses of lateral hypothalamic neurons to stimulation of the olfactory system, Brain Res., 48: 251–264.PubMedCrossRefGoogle Scholar
  172. Shu, S.Y., Penny, G.R., and Peterson, G.M., 1988, The “marginal division”; a new subdivision in the neostriatum of the rat, J. Chem. Neuroanat., 1: 147–163.PubMedGoogle Scholar
  173. Shu, S.Y., McGinty, J.F., and Peterson, G.M., 1990, High density of zinc-containing and dynorphin B- and substance P-immunoreactive terminals in the marginal division of the rat striatum, Brain Res. Bull., 24: 201- 205.Google Scholar
  174. Slotnick, B.M., 1990, Olfactory perception, in: “Comparative Perception, Vol. I, Basic Mechanisms”, Mark A. Berkley and Williams C. Stebbins, eds., John Wiley and Sons, Inc., pp. 155–214.Google Scholar
  175. Small, R.K. and Leonard, C.M., 1983, Early recovery of function after olfactory tract section correlated with reinnervation of olfactory tubercle, Brain Res., 283: 25–40.PubMedGoogle Scholar
  176. Stevens, J.R., 1973, An anatomy of schizophrenia? Arch. Gen. Psychiat., 29: 177–189.PubMedCrossRefGoogle Scholar
  177. Strenge, H., Braak, E., and Braak, H., 1977, Über den Nucleus Striae Terminal is im Gehirn des Erwachsenen Menschen, Z. Mikrosk. Anat. Forsch. (Leipzig), 91: 105–118.Google Scholar
  178. Swanson, L.W. and Cowan, W.M., 1975, A note on the connections and development of the nucleus accumbens, Brain Res., 92: 324–330.PubMedCrossRefGoogle Scholar
  179. Swanson, L.W., Mogenson, G.J., Gerfen, C.R., and Robinson, P., 1984.Google Scholar
  180. Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat. Brain Res., 295: 161–178.Google Scholar
  181. Swerdlow, N.R. and Koob, G.F., 1987, Dopamine, schizophrenia, mania and depression; toward a unified hypothesis of cortico-striato-pallido-thalamic function, Behav. Brain Sci., 10: 197–245.CrossRefGoogle Scholar
  182. Switzer, R.C., Hill, J., and Heimer, L., 1982, The globus pallidus and its rostroventral extension into the olfactory tubercle of the rat; a cyto- and chemoarchitectural study, Neurosci., 7: 1891–1904.CrossRefGoogle Scholar
  183. Syzmusiak, R. and McGinty, D., 1989, Effects of basal forebrain stimulation on the walking discharge of neurons in the midbrain reticular formation of cats, Brain Res., 498: 355–359.CrossRefGoogle Scholar
  184. Ulfig, N., Braak, E., Ohm, T.G., and Pool, C.W., 1990, Vasopressinergic neurons in the magnocellular nuclei of the human basal forebrain, (in press).Google Scholar
  185. Vaccarino F.J. and Rankin J. (1989) Nucleus accumbens cholecystokinin (CCK) can either attenuate or potentiate amphetamine-induced locomotor activity; evidence for rostral-caudal differences in accumbens CCK function. Behav. Neurosci., 103: 831–836.PubMedCrossRefGoogle Scholar
  186. Vanderwolf, C.H., 1983, The role of the cerebral cortex and ascending activating systems in the control of behavior, in: “Handbook of Behavioral Neurobiology, Vol. 6”, E. Satinoff and P. Teitelbaum, eds., Plenum Publishing Corp., pp. 67–104.Google Scholar
  187. Vincent, S.R., Mcintosh, C.H.S., Buchan, A.M.J., and Brown, J.C., 1985, Central somatostatin systems revealed with monoclonal antibodies, J. Comp. Neurol., 238: 169–186.PubMedCrossRefGoogle Scholar
  188. Von Economo, C. and Koskinas, G.N., 1925, Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen, Springer Verlag, Berlin.Google Scholar
  189. Voorn, P., Gerfen, C.R., and Groenewegen, H.J., 1989, Compartmental organization of the ventral striatum of the rat; immunohistochemical distribution of enkephalin, substance P, dopamine and calcium binding protein, J. Comp. Neurol., 289: 189–201.PubMedCrossRefGoogle Scholar
  190. Walker, L.C., Koliatsos, V.E., Kitt, C.A., Richardson, R.T., Rökaeus, and Price, D.L., 1989, Peptidergic neurons in the basal forebrain magnocel- lular complex of the rhesus monkey, J. Comp. Neurol., 280: 272–282.PubMedCrossRefGoogle Scholar
  191. Wallace, D.M., Magnuson, D.J., and Gray, T., 1989, The amygdalo-brainstem pathway; selective innervation of dopaminergic, noradrenergic, and adrenergic cells in the rat, Neurosci. Lett., 97: 252–258.PubMedCrossRefGoogle Scholar
  192. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1981, Alzheimer disease; evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol., 10: 122–126.PubMedCrossRefGoogle Scholar
  193. Williams, D.J., Crossman, A.R., and Slater, P., 1977, The efferent projections of the nucleus accumbens in the rat. Brain Res., 130: 217–227.PubMedCrossRefGoogle Scholar
  194. Wilson, F.A.W. and Rolls, E.T., 1985, Reinforcement-related neuronal activity in the basal forebrain and amygdala, Soc. Neurosci. Abstr., 15: 52.Google Scholar
  195. Wood, D.M. and Emmett-Oglesby, M.W., 1989, Mediation in the nucleus accumbens of the discriminative stimulus produced by cocaine, Pharmacol. Biochem. Behav., 33: 453–457.PubMedCrossRefGoogle Scholar
  196. Woolf, N.J. and Butcher, L.L., 1982, Cholinergic projections to the basolateral amygdala; a combined Evans Blue and acetylcholinesterase analysis, Brain Res. Bull., 8: 751–763.PubMedCrossRefGoogle Scholar
  197. Woolf, N.J., Eckenstein, F., and Butcher, L.L., 1984, Cholinergic systems in the rat brain, I, Projections to the limbic telencephalon, Brain Res. Bull., 13: 751–784.PubMedCrossRefGoogle Scholar
  198. Yoshikawa, T., Fukamauchi, F., Shibuya, H., and Takahashi, R., 1989, Regional heterogeneity with the nucleus accumbens concerning the effects of dopaminergic agents on the content of cholecystokinin, Neurochem. Inst., 14: 467–469.CrossRefGoogle Scholar
  199. Young, W.S. Ill, Alheid, G.F., and Heimer, L., 1984, The ventral pallidal projection to the mediodorsal thalamus; a study with fluorescent retrograde tracers and immunohistofluorescence, J. Neurosci., 4: 1626–1638.PubMedGoogle Scholar
  200. Zaborszky, L., Alheid, G.F., Beinfeld, M.L., Eiden, L.E., Heimer, L., and Palkovits, M., 1985, Cholecystokinin innervation of the ventral striatum; amorphological and radioimmunological study, Neurosci., 14: 427–453.CrossRefGoogle Scholar
  201. Zaborszky, L., Carlsen, J., Brashear, H.R., and Heimer, L., 1986, Cholinergic GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band, J. Comp. Neurol., 243: 488–509.PubMedCrossRefGoogle Scholar
  202. Zahm, D.S., 1989, The ventral striatopallidal parts of the basal ganglia in the rat, II, Compartmentation of ventral pallidal efferents, Neurosci., 30: 33–50.CrossRefGoogle Scholar
  203. Zahm, D.S. and Heimer, L., 1987, The ventral striatopallido thalamic projection, III, Striatal cells of the olfactory tubercle establish direct synaptic contact with ventral pallidal cells projecting to mediodorsal thalamus. Brain Res., 404: 327–331.PubMedCrossRefGoogle Scholar
  204. Zahm, D.S. and Heimer, L., 1988, Ventral striatopallidal parts of the basal ganglia in the rat, I, Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity, J. Comp. Neurol., 272: 516–535.PubMedCrossRefGoogle Scholar
  205. Zahm, D.S. and Heimer, L., 1990, Two transpallidal pathways originating in nucleus accumbens, J. Comp. Neurol., 302: 437–446.PubMedCrossRefGoogle Scholar
  206. Zahm, D.S., Zaborszky, L., Alheid, G.F., and Heimer, L., 1987, The ventral striatopallidothalamic projection, II, The ventral pallidothalamic link, J. Comp. Neurol., 255: 592–605.PubMedCrossRefGoogle Scholar
  207. Ziehen, T., 1909 (1897), Das Centrainervensystem der Monotremen und Mar- supialier. Ein Beitrag zur vergleichenden makroskopischen und mikroskopischen Anatomie und zur Vergleichenden Entwicklungsgeschichte des Wirbelthiergehirns, II. Theil. Mikroskopische Anatomie. Erster Abschnitt. Der Faserverlauf im Hirnstamm von Pseudochirus peregrinus. In: R. Semon (Ed.), “Zoologische Forschungsreisen in Australien und dem Malayischen Archipel, III, Monotremen und Marsupialier, II, I, Lieferun”, Jena, Gustav Fischer, pp. 677–728 (note: actual date is 1901; also listed as Denkschriften der Medicinisch-Natur-wissenschaftlichen Gesellschaft Zu Jena, Sechster Band).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Lennart Heimer
    • 1
  • George F. Alheid
    • 2
  1. 1.Department of Otolaryngology and NeurosurgeryUniversity of Virginia Health Sciences CenterCharlottesvilleUSA
  2. 2.Department of Behavioral Medicine and PsychiatryUniversity of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations