Shower-Type Gamma Spectrometers, Theory and Calculation of the Principal Characteristics

  • V. F. Grushin
  • E. M. Leikin
Conference paper
Part of the The Lebedev Physics Institute Series book series (LPIS, volume 71)


The majority of experimental methods of determining the energy of γ quanta are based on the measurement of the energy distribution of secondary particles created in matter by the γ radiation. Prominent among these are methods based on using a “thick” radiator and measuring the energy of the particles arising in this [1]. An important feature of the γ spectrometer with a thick radiator is the high recording efficiency. As regards resolving power, however, these spectrometers are inferior to those with thin radiators, because of the multitude of processes taking place in the actual radiator and the consequent spread in the evolution of energy. In order to reduce title intrinsic width of the γ-spectrometer line in the low-energy range, we may either limit the number of processes constituting the main contribution to the formation of the line, or else ensure conditions such that none of the secondary particles should leave the radiator, i.e., conditions ensuring complete absorption. As the energy of the γ quanta recorded increases, the character of the processes taking place in the radiator becomes much more complex, so that complete absorption is in fact the only method of ensuring a minimum intrinsic line breadth for a thick-radiator γ spectrometer.


Energy Resolution Line Shape Light Yield Secondary Particle Random Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Experimental Nuclear Physics, Ed. by E. Segre, Vol. III. Wiley, New York (1959).Google Scholar
  2. 2.
    M. Bartlett, Introduction to the Theory of Random Processes. [Russian translation], IL (1958).Google Scholar
  3. 3.
    V. Feller, Introduction to the Theory of Probabilities and Its Application (second ed.,) Wiley, New York (1957).Google Scholar
  4. 4.
    I. J. Good, Proc. Cambridge Philos. Soc., 45: 360 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    E. M. Leikin, Pribory i Tekhn. Eksp., No. 1, p. 56 (1964).Google Scholar
  6. 6.
    P. Budini, Nuovo Cim., 10:236 (1953).MATHCrossRefGoogle Scholar
  7. 7.
    S. Z. Belen’kii, Avalanche Processes in Cosmic Rays. Moscow-Leningrad, Gostekhizdat (1948).Google Scholar
  8. 8.
    G. Gatti et al., Rev. Sci. Instrum., 32:949 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    P. M. Woodward, Proc. Cambridge Philos. Soc, 44:404 (1948).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    V. M. Zapevalov and E. M. Leikin, Physics Institute of the Academy of Sciences Report (1958).Google Scholar
  11. 11.
    E. Breitenberger, Progr. Nucl Phys., 4:56 (1955).Google Scholar
  12. 12.
    V. F. Grushin and E. M. Leikin, Pribory i Tekhn. Eksp., No. 3, p. 33 (1964).Google Scholar
  13. 13.
    H. Robbins, Bull. Amer. Math. Soc., 54:1151 (1948).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    V. F. Grushin, R. A. Latypova, and E. M. Leikin, Pribory i Tekhn. Eksp., No. 5, p. 40 (1965).Google Scholar
  15. 15.
    T. Yamagata, Thesis, Univ. of Illinois (1956).Google Scholar
  16. 16.
    I. P. Ivanenko and B. E. Samosudov, Zh. Eks. i Teor. Fiz., 35:1265 (1958).Google Scholar
  17. 17.
    V. V. Matveev and A. D. Sokolov, Photomultipliers in Scintillation Counters. Gosatomizdat (1962).Google Scholar
  18. 18.
    A. V. Kutsenko, V. P. Maikov, and V. V. Pavlovskaya, Pribory i Tekhn. Eksp., No. 4, p. 38 (1964).Google Scholar
  19. 19.
    V. F. Grushin, V. A. Zapevalov, and E. M. Leikin, Pribory i Tekhn. Eksp., No. 2, p. 27 (1960).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • V. F. Grushin
  • E. M. Leikin

There are no affiliations available

Personalised recommendations