Skip to main content

Shower-Type Gamma Spectrometers, Theory and Calculation of the Principal Characteristics

  • Conference paper
Photomesic and Photonuclear Processes

Part of the book series: The Lebedev Physics Institute Series ((LPIS,volume 71))

  • 76 Accesses

Abstract

The majority of experimental methods of determining the energy of γ quanta are based on the measurement of the energy distribution of secondary particles created in matter by the γ radiation. Prominent among these are methods based on using a “thick” radiator and measuring the energy of the particles arising in this [1]. An important feature of the γ spectrometer with a thick radiator is the high recording efficiency. As regards resolving power, however, these spectrometers are inferior to those with thin radiators, because of the multitude of processes taking place in the actual radiator and the consequent spread in the evolution of energy. In order to reduce title intrinsic width of the γ-spectrometer line in the low-energy range, we may either limit the number of processes constituting the main contribution to the formation of the line, or else ensure conditions such that none of the secondary particles should leave the radiator, i.e., conditions ensuring complete absorption. As the energy of the γ quanta recorded increases, the character of the processes taking place in the radiator becomes much more complex, so that complete absorption is in fact the only method of ensuring a minimum intrinsic line breadth for a thick-radiator γ spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Experimental Nuclear Physics, Ed. by E. Segre, Vol. III. Wiley, New York (1959).

    Google Scholar 

  2. M. Bartlett, Introduction to the Theory of Random Processes. [Russian translation], IL (1958).

    Google Scholar 

  3. V. Feller, Introduction to the Theory of Probabilities and Its Application (second ed.,) Wiley, New York (1957).

    Google Scholar 

  4. I. J. Good, Proc. Cambridge Philos. Soc., 45: 360 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. M. Leikin, Pribory i Tekhn. Eksp., No. 1, p. 56 (1964).

    Google Scholar 

  6. P. Budini, Nuovo Cim., 10:236 (1953).

    Article  MATH  Google Scholar 

  7. S. Z. Belen’kii, Avalanche Processes in Cosmic Rays. Moscow-Leningrad, Gostekhizdat (1948).

    Google Scholar 

  8. G. Gatti et al., Rev. Sci. Instrum., 32:949 (1961).

    Article  ADS  Google Scholar 

  9. P. M. Woodward, Proc. Cambridge Philos. Soc, 44:404 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. V. M. Zapevalov and E. M. Leikin, Physics Institute of the Academy of Sciences Report (1958).

    Google Scholar 

  11. E. Breitenberger, Progr. Nucl Phys., 4:56 (1955).

    Google Scholar 

  12. V. F. Grushin and E. M. Leikin, Pribory i Tekhn. Eksp., No. 3, p. 33 (1964).

    Google Scholar 

  13. H. Robbins, Bull. Amer. Math. Soc., 54:1151 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. F. Grushin, R. A. Latypova, and E. M. Leikin, Pribory i Tekhn. Eksp., No. 5, p. 40 (1965).

    Google Scholar 

  15. T. Yamagata, Thesis, Univ. of Illinois (1956).

    Google Scholar 

  16. I. P. Ivanenko and B. E. Samosudov, Zh. Eks. i Teor. Fiz., 35:1265 (1958).

    Google Scholar 

  17. V. V. Matveev and A. D. Sokolov, Photomultipliers in Scintillation Counters. Gosatomizdat (1962).

    Google Scholar 

  18. A. V. Kutsenko, V. P. Maikov, and V. V. Pavlovskaya, Pribory i Tekhn. Eksp., No. 4, p. 38 (1964).

    Google Scholar 

  19. V. F. Grushin, V. A. Zapevalov, and E. M. Leikin, Pribory i Tekhn. Eksp., No. 2, p. 27 (1960).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Consultants Bureau

About this paper

Cite this paper

Grushin, V.F., Leikin, E.M. (1967). Shower-Type Gamma Spectrometers, Theory and Calculation of the Principal Characteristics. In: Skobel’tsyn, D.V. (eds) Photomesic and Photonuclear Processes. The Lebedev Physics Institute Series, vol 71. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0139-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0139-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0141-8

  • Online ISBN: 978-1-4757-0139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics