Human ovarian surface epithelium: growth patterns and differentiation

  • N. Auersperg
  • S. L. Maines-Bandiera
  • P. A. Kruk


The ovarian surface epithelium (OSE) is the modified pelvic mesothelium that covers the ovary. It comprises only a minute fraction of the total ovarian mass but it is thought to be the source of most human ovarian carcinomas, including those varieties that contribute most to cancer mortality [1]. The precise causes of ovarian cancer are not known. However, it is likely that important clues will be obtained by a thorough understanding of the development, structure and functions of the surface epithelium from which these neoplasms arise.


Ovarian Cancer Ovarian Cancer Cell Fibrin Clot Ovarian Surface Epithelium Ovarian Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yancik, R. (1993) Ovarian cancer: age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer, 71, 517–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Gondos, B. (1975) Surface epithelium of the developing ovary. Am., J. Pathol., 81,303–20.PubMedGoogle Scholar
  3. 3.
    Nicosia, S.V. (1983) Morphological changes in the human ovary throughout life. In The Ovary, (ed. G.B. Serra), Raven Press, New York, pp. 57–81.Google Scholar
  4. 4.
    Motta, P.M. and Makabe, S. (1982) Develop — ment of the ovarian surface and associated germ cells in the human fetus. Cell Tiss. Res., 226,493–510.CrossRefGoogle Scholar
  5. 5.
    Byskov, A.G. (1986) Differentiation of mammalian embryonic gonad.Physiol. Rev., 66, 71–117.PubMedCrossRefGoogle Scholar
  6. 6.
    Godwin, A.K., Testa, J.R. and Hamilton, T.C. (1993) The biology of ovarian cancer development. Cancer, 71,530–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Heinonen, P.K., Koivuls, T., Rajameinir, H. and Pystynen, P. (1986) Peripheral and ovarian venous concentrations of steroid and gonadotropin hormones in postmenopausal women with epithelial ovarian tumors. Gynec. Oncol., 25,1–10.CrossRefGoogle Scholar
  8. 8.
    Auersperg, N., Siemens, C.H. and Myrdal, S.E. (1984) Human ovarian surface epithelium in primary culture. In Vitro, 20, 743–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Siemens, C.H. and Auersperg, N. (1988) Serial propagation of human ovarian surface epithelium in tissue culture, J. Cell. Physiol, 134, 347–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Kruk, P.A., Maines-Bandiera, S.L. and Auersperg, N. (1990) A simpHfied method to culture human ovarian surface epithelium. Lab. Invest., 63,132–6.PubMedGoogle Scholar
  11. 11.
    Kleinman, H.K., McGarvey, M.L., Liotta, L.A. et al, (1982) Isolation and characterization of type IV procollagen, laminin, and heparin sulfate proteoglycan from the EHS sarcoma. Biochem., 21, 6188–93.CrossRefGoogle Scholar
  12. 12.
    Maines-Bandiera, S.L., Kruk, P.A. and Auersperg, N. (1992) Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am. J. Obstet. Gynecol., 167, 729–35.PubMedGoogle Scholar
  13. 13.
    Kruk, P.A., Uitto, J., Firth, J.D., Dedhar, S. and Auersperg, N. (1994) Dynamic interactions between human ovarian surface epithelial cells and adjacent extracellular matrix. Submitted.Google Scholar
  14. 14.
    Greenburg, G. and Hay, E.D. (1986) Cytodifferentiation and tissue phenotype change during transformation of embryonic lens epithelium to mesenchyme-like cells in vitro. Develop. Biol., 115, 363–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Greenburg, G. and Hay, E.D. (1988) Cytoskeleton and thyroglobulin expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development, 102, 605–22.Google Scholar
  16. 16.
    Zuk, A., Matlin, K. and Hay, E.D. (1989) Type 1 collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity. J. Cell Biol., 108, 903–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Noel, A.C., Calle, A., Emonard, H.P. et al, (1991) Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res., 51,405–14.PubMedGoogle Scholar
  18. 18.
    Kruk, P.A. and Auersperg, N. (1994) A line of rat ovarian surface epithelium (ROSE) provides a continuous source of complex extracellular matrix. In Vitro Cell Develop. Biol., in press.Google Scholar
  19. 19.
    Kruk, P.A. and Auersperg, N. (1992) Human ovarian surface epithelial cells are capable of physically restructuring extracellular matrix. Am. J. Obstet, Gynecol., 167,1437–43.Google Scholar
  20. 20.
    Bell, E., Ivarsson, B. and Merrill, C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro. Proc. Natl Acad. Sci. USA, 76,1274–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark, R.A.F. (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Dermatol, 94,1285–134-S.CrossRefGoogle Scholar
  22. 22.
    Schiro, J.A., Chan, B.M.C., Roswsit, W.T. et al, (1991) Integrin VLA-2 mediates reorganization and contraction of collagen matrices by human cells. Cell, 67,403–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Granada, J.L., Lande, M.A. and Karvonen, R.L. (1990) A human cartilage metalloproteinase with elastolytic activity. Connect. Tissue Res., 24,249–63.CrossRefGoogle Scholar
  24. 24.
    Liotta, L.A., Rao, C.N. and Barsky, S.H. (1983) Tumor invasion and the extracellular matrix. Lab. Invest., 49, 636–49.PubMedGoogle Scholar
  25. 25.
    Curry, T.E., Dean, D.D., Sanders, S.L. et al, (1989) The role of ovarian proteases and their inhibitors in ovulation. Steroids, 54, 501–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Ny, T., Bjersing, L., Hsueh, A.J.W. and Loskutoff, D.J. (1985) Cultured granulosa cells produce two plasminogen activators and an antiactivator, each regulated differently by gonadotropins. Endocrinol, 116,1666–8.CrossRefGoogle Scholar
  27. 27.
    Auersperg, N., MacLaren, I.A. and Kruk, P.A. (1991) Ovarian surface epithelium: autonomous production of connective tissue- type extracellular matrix. Biol Reprod., 44, 717–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Nicosia, S.V. (1987) The aging ovary. Med. Clin. N. Am., 71,1–9.PubMedGoogle Scholar
  29. 29.
    Auersperg, N., Kruk, P.A. and Maines- Bandiera, S.L. (1994) Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab. Invest., in press.Google Scholar
  30. 30.
    Czernobilsky, B. (1985) Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa, and rete ovarii cells of the human ovary. Eur. J. Cell Biol., 37,175–90.PubMedGoogle Scholar
  31. 31.
    Czernobilsky, B., Moll, R., Franke, W.W. et al, (1984) Intermediate filaments of normal and neoplastic tissues of the female genital tract with emphasis on problems of differential tumor diagnosis. Pathol Res. Pract., 179, 31–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Frankel, A.E., Ring, D.B., Tringale, F. and Hsieh-Ma, S.T. (1985) Tissue distribution of breast cancer-associated antigens defined by monoclonal antibodies. J. Biol Response Mod., 4, 273–86.PubMedGoogle Scholar
  33. 33.
    Eidelman, S., Damsky, C.H., Wheelock, M.J. and Damjanov, I. (1989) Expression of the cell-cell adhesion glycoprotein cell-CAM 120/80 in normal human tissues and tumors. Am. J. Pathol., 135,101–10.PubMedGoogle Scholar
  34. 34.
    Hamilton, T.C., Young, R.C., McKoy, W.M. et al, (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res., 43, 5379–89.PubMedGoogle Scholar
  35. 35.
    Fogh, J. and Tremple, G. (1975) New human tumor cell lines. InHuman Tumor Cells in Vitro, (ed. J. Fogh), Plenum Publishers, New York, pp. 115–60.Google Scholar
  36. 36.
    Maines-Bandiera, S.L. and Auersperg, N. (1993) Progression of E-cadherin expression in normal human ovarian surface epithelial cells and ovarian carcinomas. Proc. Am. Assoc. Cancer Res., 34,32.Google Scholar
  37. 37.
    Berchuck, A., Kohier, M.F., Boente M.P. et al, (1993) Growth regulation and transformation of ovarian epithelium. Cancer, 71, 545–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Mills, G.B., Hashimoto, S., Hurteau, J. et al, (1992) Regulation of growth of human ovarian cancer cells. In Ovarian Cancer 2: Biology, Diagnosis and Management, (eds F. Sharp, W.P. Mason and W. Creasman), Chapman & Hall, London, pp. 127–45.Google Scholar
  39. 39.
    Berchuck, A., Rodriguez, G., Olt, G. et al, (1992) Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-β,. Am. J. Obstet. Gynecol., 166, 676–84.PubMedGoogle Scholar
  40. 40.
    Johnson, G.R., Saeki, T., Auersperg, N. et al, (1991) Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells: nuclear locaHzation of endogenous amphiregulin. Biochem. Biophys. Res. Commun., 180,4481–8.CrossRefGoogle Scholar
  41. 41.
    Johnson, G.R., Kannan, B., Shoyab, M. and Stromberg, K. (1993) Amphiregulin induces tyrosine phosphorylation of the epidermal growth factor receptor and pl85erbB2. J. Biol Chem., 268, 2924–31.PubMedGoogle Scholar
  42. 42.
    Rodriguez, G.C., Berchuck, A., Whitaker, R.S. et al, (1991) Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. Am. J. Obstet. Gynecol., 164, 745–50.PubMedGoogle Scholar
  43. 43.
    Ziltener, H.J., Maines-Bandiera, S., Schräder, J.W. and Auersperg, N. (1993) Secretion of IL-1, IL-6 and colony stimulating factors by human ovarian surface epithelium. Biol Reprod., 49, 635–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Kacinski, B.M., Stanley, E.R., Carter, D. et al, (1989) Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int. J. Radiation Oncol Biol Phys., 17,159–64.CrossRefGoogle Scholar
  45. 45.
    Price, F.V., Chambers, S.K., Chambers, J.T. et al, (1993) Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am. J. Obstet. Gynecol., 168, 520–7.PubMedGoogle Scholar
  46. 46.
    Kacinski, B.M., Carter, D., Mittal, K. et al, (1990) Ovarian adenocarcinomas express fms-,complementary transcripts and fms, antigen, often with coexpression of CSF-1. Am. J. Pathol., 137,135–47.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • N. Auersperg
  • S. L. Maines-Bandiera
  • P. A. Kruk

There are no affiliations available

Personalised recommendations