Advertisement

The Effect of Thermal Gas Motion on Microbalance Measurements

  • E. Robens

Abstract

This paper is a survey of research relevant to disturbances in gravimetric measurements that result from Brownian motion and thermal gas flow (thermomolecular flow, slip flow, and convection). Methods for elimination or minimization of the disturbances are reviewed and discussed. The application of microgravimetric methods for investigating gas flow is mentioned briefly.

Keywords

Brownian Motion Knudsen Number Slip Flow Accommodation Coefficient Nuclear Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vacuum Microbalance Techniques, Vols. 1–7, Plenum Press, New York (1961–70).Google Scholar
  2. A. W. Czanderna and C. H. Massen and J. A. Poulis, in: S. P. Wolsky and E. J. Zdanuk (eds.), Ultra Micro Weight Determination in Controlled Environments, Interscience, New York (1969).Google Scholar
  3. P. D. Garn, Thermoanalytic Methods of Investigation, Academic Press, New York (1965).Google Scholar
  4. C. Duval, Thermogravimetric Analysis, 2nd ed., Elsevier, Amsterdam (1963).Google Scholar
  5. A detailed review on molecular flow has been presented by W. Steckelmacher, Vacuum, 16, 561 (1966).CrossRefGoogle Scholar
  6. Molecular and thermo- molecular flow is discussed by J. D. Swift, Kinetic theory of gases and gaseous flow, in: A. H. Beck (ed.). Handbook of Vacuum Physics, Vol. 1, Pergamon Press, Oxford (1966), p. 297.Google Scholar
  7. D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Methuen and Co., London (1965).Google Scholar
  8. M. Wax (ed.). Selected Papers on Noise and Stochastic Processes, Dover Publications, New York (1954).Google Scholar
  9. 1.
    C. Schaefer, Einführung in die Theoretische Physik, Vol. 2, 3rd ed., Walter de Gruyter, Berlin (1955).Google Scholar
  10. 2.
    C. W. McCombie, Rep. Progr. Phys., 16, 266 (1953).CrossRefGoogle Scholar
  11. 3.
    V. S. Pugachev, Theory of Random Functions, Pergamon Press, Oxford (1965).Google Scholar
  12. 4.
    Ch. Kleint and H. J. Gasse, Fortschr. Phys., 499 (1965).Google Scholar
  13. 5.
    H. Bittel, Z„ Angew. Phys., 13, 397 (1961).Google Scholar
  14. 6.
    J. A. Poulis and J. M. Thomas, Sensitivity of analytical balances and relevance of fluctuation theory, in: K. H. Behrndt (ed.). Vacuum Microbalance Techniques, Vol. 3, Plenum Press, New York (1963), p. 1.Google Scholar
  15. 7.
    H. Pettersson, Proc. Phys. Soc. (London), 32, 209 (1920).Google Scholar
  16. 8.
    J. M. Thomas and B. R. Williams, Chem. Soc. (London) Quart. Rev., 19, 231 (1965).CrossRefGoogle Scholar
  17. 9.
    J. M. Lafferty, Manometers for low gas pressures, in: S. Dushman and J. M. Lafferty (eds.). Scientific Foundations of Vacuum Technique, Wiley and Sons, Ltd., New York (1962).Google Scholar
  18. 10.
    H. Klumb and D. Fuchs, Vakuum-Technik, 7, 131 (1958).Google Scholar
  19. 11.
    H. Klumb and K. H. Schmitt, Vakuum-Technik, 7, 185 (1958).Google Scholar
  20. 12.
    R. Hofmann and Weissmann, Vakuum-Technik, 13, 10 (1964).Google Scholar
  21. 13.
    R. Hofmann and E. Weissmann, Vakuum-Technik, 13, 75 (1964).Google Scholar
  22. 14.
    J. D. Swift, Kinetic theory of gases and gaseous flow, in: A. H. Beck (ed.), Handbook of Vacuum Physics, Vol. 1, Pergamon Press, Oxford (1966), p. 297.Google Scholar
  23. 15.
    S. Weber, W. H. Keesom, and G. Schmidt, Comm. Kamerlingh Onnes Lab., Univ. Leyden, 22, No. 246a, 1 (1936).Google Scholar
  24. 16.
    S. Weber, Comm. Kamerlingh Onnes Lab., Univ. Leyden, 22, No. 246b, 1 (1936).Google Scholar
  25. 17.
    S. Weber and G. Schmidt, Comm. Kamerlingh Onnes Lab., Univ. Leyden, 22 No. 246c, 1 (1936).Google Scholar
  26. 18.
    S. Weber, Comm Kamerlingh Onnes Lab., Univ. Leyden, 18, No, 246d, 1 (1936).Google Scholar
  27. 19.
    J. P. Hobson, Vacuum, 15, 543 (1965).CrossRefGoogle Scholar
  28. 20.
    H. J. M. Hanley and W. Steele, Trans. Faraday Soc., 61, 2661 (1965).CrossRefGoogle Scholar
  29. 21.
    G. Hettner, Z. Physik, 27, 12 (1924).CrossRefGoogle Scholar
  30. 22.
    G. Hettner, Ergeb. Exakt. Naturw., 7, 209 (1928).CrossRefGoogle Scholar
  31. 23.
    P. Rosenblatt and V. K. Lalier, Phys. Rev., 70, 385 (1946).CrossRefGoogle Scholar
  32. 24.
    S. Weber, Det. Kgl. Danske Videnskab. Selskab, Matematisk-Fysikske Meddelelser, 24, No. 4, 1 (1947).Google Scholar
  33. 25.
    R. L. Saxton and W. E. Ranz, J. Appl. Phys., 23, 917 (1952).CrossRefGoogle Scholar
  34. 26.
    A. W. Czanderna and J. M. Honig, Anal. Chem., 29, 1206 (1957).CrossRefGoogle Scholar
  35. 27.
    A. W. Czanderna and J. M. Honig, J. Phys. Chem., 63, 620 (1959).CrossRefGoogle Scholar
  36. 28.
    L. Waldmann, Z. Naturforsch., 14a, 589 (1959).Google Scholar
  37. 29.
    H. Gabriel, Z. Physik. Chem., Neue Folge, 39, 89 (1963).CrossRefGoogle Scholar
  38. 30.
    H. Krupp, E. Robens, G. Sandstede, and G. Walter, Vacuum, 13, 297 (1963); German transl.: G. Güntherschulze (ed.), Vacuum Technique, Pergamon Press, Oxford (1965).CrossRefGoogle Scholar
  39. 31.
    J. M. Thomas and J. A. Poulis, Disturbances arising from thermomolecular flow in microbalance experiments, in: K. H. Behrndt (ed.). Vacuum Microbalance Techniques, Vol. 3, Plenum Press, New York (1963), p. 15.Google Scholar
  40. 32.
    J. A. Poulis and M. Thomas, J. Sci. Instr., 40, 95 (1963).CrossRefGoogle Scholar
  41. 33.
    J. A. Poulis, B. Pelupessy, C. H. Massen, and J. M. Thomas, J. Sci. Instr., 41, 295 (1964).CrossRefGoogle Scholar
  42. 34.
    J. A. Poulis, C. H. Massen, and J. M. Thomas, J. Sci. Instr., 43, 234 (1966).CrossRefGoogle Scholar
  43. 35.
    J. B. Moser, Description of a thermomoleeular effect on a wire suspended from a microbalance, Report Argonne National Laboratory (1963).Google Scholar
  44. 36.
    H. L. Gruber, Monatsh. Chem., 95, 1017 (1964).CrossRefGoogle Scholar
  45. 37.
    C. H. Massen, B. Pelupessy, J. M. Thomas, and J. A. Poulis, in: K. H. Behrndt (ed.). Vacuum Microbalance Techniques, Vol. 5, Plenum Press, New York (1966), p. 1.Google Scholar
  46. 38.
    T. Steensland and K. S. Forland, in: K. H. Behrndt (ed.). Vacuum Microbalance Techniques, Vol. 5, Plenum Press, New York (1966), p. 17.Google Scholar
  47. 39.
    K. H. Behrndt, C. H. Massen, J. A. Poulis, and T. Steensland, in: K. H. Behrndt (ed.). Vacuum Microbalance Techniques, Vol. 5, Plenum Press, New York (1966), p. 33.Google Scholar
  48. 40.
    J. A. Poulis and C. H. Massen, 3. Int. Vakuum-Kongress, Stuttgart (1965).Google Scholar
  49. 41.
    J. M. Thomas and B. R. Williams, in: P. M. Waters (ed.). Vacuum Microbalance Techniques, Vol. 4, Plenum Press, New York (1965), p. 209.Google Scholar
  50. 42.
    C. H. Massen and J. A. Poulis, in: A. W. Czanderna (ed.), Vacuimi Microbalance Techniques, Vol. 6, Plenum Press, New York (1967), p. 17.Google Scholar
  51. 43.
    J. A. Poulis and C. H, Massen, J. Sci. Instr., 43, 275 (1967).CrossRefGoogle Scholar
  52. 44.
    G. Walter and G. Wurzbacher, Sorption of gaseous hydrocarbons at fuel cell catalysts of the platinum metal group, U. S. Army Report AD-467, 849, Clearinghouse, Springfield (1965).Google Scholar
  53. 45.
    W. Kuhn, E. Robens, G. Sandstede, and G. Walter, in: C. H. Massen and H. J. van Beckum (eds.), Vacuum Micro- balance Techniques, Vol. 7, Plenum Press, New York (1970) (in print).Google Scholar
  54. 46.
    L. Cahn and H. Schultz, Analytical Chem., 35, 1729 (1963).CrossRefGoogle Scholar
  55. 47.
    W. H. Kuhn and G. Walter, Microgravimetric investigation into the mechanisms of corrosion of reactor materials in the presence of nuclear radiation, Euratom Report EUR 1474.e; Presses Académiques Européennes, Brüssels (1964).Google Scholar
  56. 48.
    J. D. Ferchak, Rev. Sci. Instr., 38, 273.Google Scholar
  57. 49.
    E. Robens, G. Sandstede, G. Walter, and G. Wurzbacher, Naturwiss., 55, 341 (1968).CrossRefGoogle Scholar
  58. 50.
    E. Robens, G. Sandstede, G. Walter, and G. Wurzbacher, in: C. H. Massen and H. J. van Beckum (eds.), Vacuum Microbalance Techniques, Vol. 7, Plenum Press, New York (1970).Google Scholar
  59. 51.
    E. Poeschel and R. Skoutajan, Experimentelle Untersuchung chemischer Reaktionen von Uran, Urandioxid und Urancarbid mit Luft and Wasserdampf im Temperaturbereich 600 bis 13 00°C. Bundesministerium für wissenschaftliche Forschung, Forschungsbericht K 67–13, ZAED beim Gmelin Institut, Frankfurt/Main (1967).Google Scholar
  60. 52.
    A. C. Levi and J. J. M. Beenakker, Physics Letters 25A, 350 (1967).Google Scholar
  61. 53.
    E. Robens and G. Sandstede, Z. Instrumentenk., 75, 167 (1967).Google Scholar
  62. 54.
    J. A. Poulis, Appl. Sci. Res., 14A, 98 (1965).Google Scholar
  63. 55.
    R. Sappok and H. P. Boehm, Chemie-Ing. Technik, 41 829 (1969).CrossRefGoogle Scholar
  64. 56.
    R. Bowers and E. A. Long, Rev. Sci. Instr., 41, 337 (1955).CrossRefGoogle Scholar
  65. 57.
    C. Duval, Inorganic Thermogravimetric Analysis, 2nd ed., Elsevier, Amsterdam (1963).Google Scholar
  66. 58.
    C. Duval, Anal. Chim, Acta, 31, 301 (1964).CrossRefGoogle Scholar
  67. 59.
    P. D. Garn, Thermoanalytical Methods of Investigation, Academic Press, New York (1965).Google Scholar
  68. 60.
    C. Eyraud and R. Goton, Bull. Soc. Chim. France, 1953M, 1009 (1953).Google Scholar
  69. 61.
    V. L. Rogallo and H. F. Savage, Rev. Sci. Instr., 34, 988 (1963).CrossRefGoogle Scholar
  70. 62.
    H. Straubel, Dechema-Monographien, 43, 375 (1962).Google Scholar
  71. 63.
    Thorpe, S Dictionary of Applied Chemistry, Vol. 11, 4th ed., Longman, Green and Co. (1954), p. 843.Google Scholar
  72. 64.
    E. Robens and G. Sandstede, Vakuum-Technik, 16, 125 (1967).Google Scholar
  73. 65.
    C. H. Massen, Deutsch-Niederländisches Vakuum-Symposium, Aachen. Kurzfassungen, VDI-Verlag, Düsseldorf (1967).Google Scholar
  74. 66.
    H. L. Eschbach and H. Moret, Deutsch-Niederländisches Vakuum-Symposium, Aachen. Kurzfassungen. VDI-Verlag, Düsseldorf (1967).Google Scholar
  75. 67.
    McGraw-Hill Encyclopedia of Science and Technology, Vol. 11, McGraw-Hill, New York (1966), p. 317.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • E. Robens
    • 1
  1. 1.Battelle-Institut e. V.Frankfurt (Main)West Germany

Personalised recommendations