The Simultaneous Use of Mass Spectrometer and Microbalance Techniques for the Carbon-Oxygen System

  • J. Graham Brown
  • John Dollimore
  • Clive M. Freedman
  • Brian H. Harrison
Conference paper


The initial degassing of a high-surface-area graphite is characterized using mass spectrometric and thermogravimetric weight-loss measurements. It will be indicated how far the combination of these allied techniques can be used to define the graphitic nature of the material in terms of the extent of the basal and edge planes of the graphite crystallite. The active surface area of the graphite was measured by the formation of surface oxide during low-pressure oxygen chemisorption onto the clean surface of the material. By subsequent thermal desorption of surface oxide an additional value for the active surface area was obtained from the weight-loss data and the known ratios of the desorbed gaseous species CO and CO2. The utility of a mass spectrometer — microbalance system for the study of gas — surface reactions is discussed.


Surface Oxide Active Surface Area Oxygen Chemisorption Edge Plane Mass Spectrometer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Hennig, Proceedings of the Fifth Conference on Carbon, Vol. 1, Pergamon Press, Oxford (1963), p. 143.Google Scholar
  2. 2.
    E. A. C. Follet, Carbon, 1, 329 (1964).CrossRefGoogle Scholar
  3. 3.
    S. J. Gregg and J. Hickman, Second Conference on Industrial Carbon and Graphite, London, 1965, Soc. Chem. Ind. (1966), p. 424.Google Scholar
  4. 4.
    F. Zitomer, Anal. Chem., 40, 1091 (1968).CrossRefGoogle Scholar
  5. 5.
    W. W. Wendlandt and T. M. Southern, Anal. Chim. Acta, 32, 405 (1965).CrossRefGoogle Scholar
  6. 6.
    J. Dollimore, C. M. Freedman, and B. H. Harrison, Seventeenth Annual Conference on Mass Spectrometry and Allied Topics, Dallas, 1969.Google Scholar
  7. 7.
    A. W. Czanderna, in: Vacuum Microbalance Techniques, Vol. 4, Plenum Press, New York (1965), p. 69.Google Scholar
  8. 8.
    H. Harker, J. B. Horsley, and A. Parkin, J. Nucl. Mater., 28, 202 (1968).CrossRefGoogle Scholar
  9. 9.
    J. Dollimore, C. M. Freedman, and B. H. Harrison, unpublished work.Google Scholar
  10. 10.
    S. Mrozowski and J. F. Andrew, Proceedings of the Fourth Conference on Carbon, Pergamon Press, Oxford (1960), p. 207.Google Scholar
  11. 11.
    H. Harker, J. T. Gallagher, and A. Parkin, Carbon, 4, 401 (1966).CrossRefGoogle Scholar
  12. 12.
    B. G. Tucker and M. F. R. Mulcahy, Trans. Faraday Soc, 65, 274 (1969).CrossRefGoogle Scholar
  13. 13.
    G. R. Hennig, J. Inorg. Nucl. Chem., 24, 1129 (1962).CrossRefGoogle Scholar
  14. 14.
    J. Dollimore, C. M. Freedman, and B. H. Harrison, to be published.Google Scholar
  15. 15.
    J. Dollimore, C. M. Freedman, and B. H. Harrison, Ninth Biennial Conference on Carbon, SP-26 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. Graham Brown
    • 1
  • John Dollimore
    • 1
  • Clive M. Freedman
    • 1
  • Brian H. Harrison
    • 1
  1. 1.Department of Pure and Applied PhysicsUniversity of SalfordSalford 5, LancashireUK

Personalised recommendations