Advertisement

Amalgam-Type Chlor-Alkali Industry

  • Fumio Hine

Abstract

Chlorine and caustic soda, which are produced simultaneously by electrolysis of sodium chloride solution, together with sulfuric acid and ammonia, are the most important industrial inorganic chemicals. Table 7.1 shows the world production of caustic soda.(1) Figure 7.1 represents the growth of production of chlorine and caustic soda in the United States and Japan. For the United States, the production is shown in short tons of chlorine and by metric tons of caustic soda in Japan. Fortunately, those units are roughly equivalent to each other: (Cl2/NaOH) X (metric ton/short ton) = 0.888/0.907 = 0.98. The production of chlorine and caustic soda increased at a healthy rate until the year 1970. The growth rate has, however, decreased with the decline of the world economy due to the oil crisis. The decline is projected to continue for several years, with a gradual recovery.

Keywords

Cell Voltage Graphite Anode Cathode Area Caustic Soda Solution Operation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soda News, Japan Soda Industry Association, No. 4 (1981).Google Scholar
  2. 2.
    K. Hass, Chem. Ing. Techn. 47, 121 (1975).CrossRefGoogle Scholar
  3. Annual Report of the Electrolytic Industries, Electrochemical Society, 1970–1979.Google Scholar
  4. Data published by Japan Soda Industry Association.Google Scholar
  5. 5.
    R. S. Karpiuk and S. D. Argade, J. Electrochem. Soc. 122, 310C (1975).Google Scholar
  6. 6.
    Reported at Annual Meeting, Japan Soda Industry Association, June 1981.Google Scholar
  7. 7.
    F. Hine, Kagaku (Chemistry) 29, 427 (1974).Google Scholar
  8. 8.
    K. Hass, Ullmanns Encyklopädie der technischen Chemie, Band 9, p. 319 (1975).Google Scholar
  9. 9.
    F. Hine, Electrochem. Technol. 8, 69 (1968).Google Scholar
  10. 10.
    F. Hine and M. Yasuda, J. Electrochem. Soc. 121, 1289 (1974).CrossRefGoogle Scholar
  11. 11.
    F. Hine, Denki Kagaku (J. Electrochem. Soc. Jpn.) 39, 60 (1971).Google Scholar
  12. 12.
    F. Hine, S. Yoshizawa, S. Okada, and T. Uesugi, Kogyo Kagaku Zasshi (J. Chem. Soc. Jpn, Industrial Chem. Section) 58, 554 (1955).CrossRefGoogle Scholar
  13. 13.
    H. B. Beer, British Patent 6490/67 (1967).Google Scholar
  14. 14.
    W. C. Gardiner and R. D. Burt, Abstr. No. 261, Electrochemical Society meeting, Los Angeles, CA, May 1970.Google Scholar
  15. 15.
    R. D. Burt and W. McM. Clarke, AIChE meeting, Puerto Rico, May 1970.Google Scholar
  16. 16.
    F. Hine, Electrochem. Technol 2, 79 (1964).Google Scholar
  17. 17.
    T. H. Chilton and A. P. Colburn, Ind. Eng. Chem. 27, 255 (1935).CrossRefGoogle Scholar
  18. 18.
    T. Sugino, Ph.D. thesis, Kyoto University, p. 226 (1958).Google Scholar
  19. F. Hine, unpublished data.Google Scholar
  20. 20.
    F. Hine and T. Nozu, Soda to Enso (Soda and Chlorine) 26, 101 (1975).Google Scholar
  21. 21.
    G. Angel and T. Lunden, J. Electrochem. Soc. 99, 435, 442 (1952); 100, 39 (1953); 102, 124, 243 (1955); and 104, 167 (1957).CrossRefGoogle Scholar
  22. 22.
    W. E. Cowley, B. Lott, and J. H. Enteisle, Trans. Inst. Chem. Eng. 41, 372 (1963).Google Scholar
  23. 23.
    K. Hass, Electrochem. Technol. 5, 246 (1967).Google Scholar
  24. 24.
    F. Hine, S. Matsuura, and S. Yoshizawa, Electrochem. Technol. 5, 251 (1967).Google Scholar
  25. 25.
    F. Hine, M. Yasuda, F. Wang, and K. Yamakawa, Electrochim. Acta 16, 1519 (1971).CrossRefGoogle Scholar
  26. 26.
    R. B. MacMullin, Chlorine. ACS Monograph No. 154, p. 151 (1962).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Fumio Hine
    • 1
  1. 1.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations