Advertisement

Voltage Balance and Energy Balance in an Electrolytic Cell

  • Fumio Hine

Abstract

Electrolytic current will flow from the anode to the cathode in electrolytic solution in a cell by means of transport of both cations and anions to the respective directions of the electric field. The mechanism of conduction in electrolytic solution differs from that in a metallic conductor in which free electrons move in the inverse direction of flow of electric current. However, the voltage drop through the electrolytic solution is governed by Ohm’s law

$$IR\, = \,Il/A\kappa \, = \,il/\kappa $$
(4.1)

where I is the current in amperes, i the current density in A/cm2, l the electrode spacing in cm, A the uniform cross-sectional area in cm2 and κ the conductivity in mhos/cm.

Keywords

Current Efficiency Electrolytic Solution Terminal Voltage Graphite Anode Natural Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hine, S. Yoshizawa, K. Yamakawa, and Y. Nakane, Electrochem. Technol 4, 555 (1966).Google Scholar
  2. 2.
    F. Hine, Electrochem. Technol 2, 79 (1964).Google Scholar
  3. Kagaku Binran (Handbook of Chemistry), p. 862, Maruzen, Tokyo (1964).Google Scholar
  4. 4.
    F. Hine, M. Yasuda, and S. Inuta, Denki Kagaku (J. Electrochem. Soc. Japan) 39, 934 (1971).Google Scholar
  5. 5.
    R. B. MacMullin, Electrochem. Technol. 1, 5 (1963).Google Scholar
  6. 6.
    R. B. MacMullin, Electrochem. Technol. 2, 106 (1964).Google Scholar
  7. 7.
    F. Hine, Denki Kagaku 35, 838 (1968).Google Scholar
  8. 8.
    R. B. MacMullin, J. Electrochem. Soc. 116, 416 (1969).CrossRefGoogle Scholar
  9. 9.
    R. B. MacMullin, Denki Kagaku 38, 570 (1970).Google Scholar
  10. 10.
    F. Hine, Denki Kagaku 39, 60 (1971).Google Scholar
  11. International Critical Tables 6, 231 (1929).Google Scholar
  12. 12.
    F. Hine, Denki Kagaku 39, 438 (1971).Google Scholar
  13. 13.
    D. A. Maclnnes, The Principles of Electrochemistry, p. 322, Reinhold, New York (1939).Google Scholar
  14. 14.
    T. Shedlovsky and D. A. Maclnnes, J. Am. Chem. Soc. 58, 1970 (1936).CrossRefGoogle Scholar
  15. 15.
    F. Hine and K. Yamakawa, Abstract No. 184, Electrochemical Society meeting, Cleveland, OH, May 1966.Google Scholar
  16. 16.
    F. Hine, S. Yoshizawa, S. Okada, and T. Uesugi, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Industrial Section) 58, 554 (1955).CrossRefGoogle Scholar
  17. 17.
    F. Hine, S. Yoshizawa, and S. Okada, Denki Kagaku 24, 370 (1956).Google Scholar
  18. 18.
    S. Okada, S. Yoshizawa, F. Hine, and Z. Takehara, Denki Kagaku 26, 165, 211 (1958).Google Scholar
  19. 19.
    S. Yoshizawa, F. Hine, Z. Takehara, and M. Yamashita, Denki Kagaku 28, 205 (1960).Google Scholar
  20. 20.
    C. L. Mantell, Electrochemical Engineering, p. 308, McGraw-Hill, New York (1960).Google Scholar
  21. 21.
    R. E. De La Rue and C. Tobias, J. Electrochem. Soc. 106, 827 (1959).CrossRefGoogle Scholar
  22. 22.
    C. W. Tobias, J. Electrochem. Soc. 106, 833 (1959).CrossRefGoogle Scholar
  23. 23.
    R. B. MacMullin, Electrolysis of brines in mercury cells, in Chlorine, edited by J. S. Sconce, ACS Monograph 154, Reinhold, New York (1962).Google Scholar
  24. 24.
    W. C. Gardiner, Electrochem. Technol. 1, 71 (1963).Google Scholar
  25. 25.
    F. Hine, M. Yasuda, R. Nakamura, and T. Nöda, J. Electrochem. Soc. 122, 1185 (1975).CrossRefGoogle Scholar
  26. 26.
    M. Murozumi, Electrochem. Technol. 5, 236 (1967).Google Scholar
  27. 27.
    H. Shibata and Y. Yamasaki, Electrochem. Technol. 5, 239 (1967).Google Scholar
  28. 28.
    J. E. Funk and J. F. Thorpe, Electrochem. Soc. 116, 48 (1969).CrossRefGoogle Scholar
  29. 29.
    N. D. Kosher and O. S. Ksenzhek, Soviet Electrochem. 8, 436 (1972).Google Scholar
  30. 30.
    P. A. Danna, J. Electrochem. Soc. 121, 1286 (1974).CrossRefGoogle Scholar
  31. 31.
    N. Ibl, Chem. Ing. Tech. 35, 353 (1963).CrossRefGoogle Scholar
  32. 32.
    L. J. J. Janssen and J. G. Hoogland, Electrochim. Acta 15, 1013 (1970); 18, 543 (1973).CrossRefGoogle Scholar
  33. 33.
    N. Ibl, J. Venczel, E. Schalch, and E. Adam, Chem. Ing. Tech. 43, 202 (1971).CrossRefGoogle Scholar
  34. 34.
    R. B. MacMullin, K. L. Mills, and F. N. Ruehlen, J. Eletrochem. Soc. 118, 1582 (1971).CrossRefGoogle Scholar
  35. 35.
    M. G. Fouad, G. H. Sedahmed, and H. A. El-Abd, Electrochim. Acta 18, 279 (1973).CrossRefGoogle Scholar
  36. 36.
    M. G. Fouad and G. H. Sedahmed, Electrochim. Acta 20, 615 (1975).CrossRefGoogle Scholar
  37. 37.
    I. Rousar and V. Cezner, Electrochim. Acta 20, 289 (1975).CrossRefGoogle Scholar
  38. 38.
    I. Rousar, J. Kacin, E. Upper, F. Smirous, and V. Cezner, Electrochim. Acta 20, 295 (1975).CrossRefGoogle Scholar
  39. 39.
    H. Vogt, Electrochim. Acta 23, 1019 (1978).CrossRefGoogle Scholar
  40. 40.
    D. S. Scott, Properties of cocurrent gas-liquid flow, in Advances in Chemical Engineering, Vol. 4, edited by T. B. Brew et al., p. 199, Academic, New York (1963).Google Scholar
  41. Chemical Engineers’ Handbook, edited by J. H. Perry, pp. 4–21, and 5–38, McGraw Hill, New York (1963).Google Scholar
  42. 42.
    T. Z. Fahidy, Can. J. Chem. Eng. 174 (June, 1966).Google Scholar
  43. 43.
    R. E. Meredith and C. W. Tobias, J. Electrochem. Soc. 110, 1257 (1963).CrossRefGoogle Scholar
  44. 44.
    R. R. Lessard and S. A. Zieminski, Ind. Eng. Chem. Fundam. 10, 260 (1971).CrossRefGoogle Scholar
  45. 45.
    F. Hine and T. Sugimoto, Abstract No. 459, Electrochemical Society meeting, Seattle, WA, May 1978.Google Scholar
  46. 46.
    F. Hine and K. Murakami, J. Electrochem. Soc. 127, 292 (1980).CrossRefGoogle Scholar
  47. 47.
    O. DeNora, Chem. Ing. Tech. 42, 222 (1970).CrossRefGoogle Scholar
  48. 48.
    O. DeNora, Chem. Ing. Tech. 43, 182 (1971).CrossRefGoogle Scholar
  49. 49.
    J. Horacek and S. Puechaver, Chem. Eng., Prog. 67(3), 71 (1971).Google Scholar
  50. 50.
    G. Faita and G. Fiori, J. Appl. Electrochem. 2, 31 (1972).CrossRefGoogle Scholar
  51. 51.
    J. E. Currey, A. T. Emery, and C. S. McLarly, Chlorine Bicentennial Symposium, p. 187, Electrochemical Society (1974).Google Scholar
  52. 52.
    R. W. Ralston, Chlorine Bicentennial Symposium, p. 145, Electrochemical Society (1974).Google Scholar
  53. 53.
    J. P. Lombard, Abstract No. 463, Electrochemical Society meeting, Seattle, WA, May 1978.Google Scholar
  54. 54.
    K. Aoki and K. Nagaike, Denki Kagaku 30, 652 (1962).Google Scholar
  55. 55.
    E. Yeager, ONR Contract, No. 2391(00) (1958 and 1960).Google Scholar
  56. 56.
    H. Hölmann, Chem. Eng. p. 63 (July 25, 1960).Google Scholar
  57. Uhde HCl Cell (catalogue), Achema (1964).Google Scholar
  58. 58.
    F. S. Low, U. S. Patents 2, 468, 766 and 2, 470, 073.Google Scholar
  59. 59.
    C. P. Roberts, Chem. Eng. Prog. 46, 436 (1950).Google Scholar
  60. 60.
    Anonymous, Chem. Ind. 66, 501 (1950).Google Scholar
  61. 61.
    D. W. Schroeder, Ind. Eng. Chem. 1, 141 (1962).Google Scholar
  62. 62.
    W. Teske und H. Hölmann, Z. Elektrochem. 66, 787 (1962).Google Scholar
  63. 63.
    F. Hine and K. Yamakawa, Electrochim. Acta 13, 2119 (1968).CrossRefGoogle Scholar
  64. 64.
    F. Hine and K. Yamakawa, Electrochim. Acta 15, 769 (1970).CrossRefGoogle Scholar
  65. 65.
    F. Hine and K. Yamakawa, Abstract No. 258, Electrochemical Society meeting, Los Angeles, CA, May 1970.Google Scholar
  66. 66.
    P. Gallone and G. Messner, Electrochem. Tech. 3, 321 (1965).Google Scholar
  67. 67.
    A. Redniss, HCl oxidation processes, in Chlorine, edited by J. S. Sconce, p. 250, ACS Monograph 154, Reinhold, New York (1962).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Fumio Hine
    • 1
  1. 1.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations