Three-Particle Scattering a Review of Recent Work on the Nonrelativistic Theory

  • Ian Duck


This review is intended to be an exposition of recent work in three-particle scattering. Our discussion is restricted to the nonrelativistic regime—in fact almost exclusively to the three-nucleon problem—and we emphasize comparison with experiment rather than the formalism itself. We shall meet the three-body bound-state problem only coincidentally as it occurs in our discussion of scattering. The major portion of this article will be a discussion of recent successful calculations of low-energy neutron-deuteron elastic and inelastic scattering. In this discussion we shall follow most closely the elegant and lucid work of Amado and his co-workers. Following the discussion of Amado’s work(1–5) we turn to the formal, general work of Faddeév,(6–9) which is based upon the original discussions of rearrangement collisions due to Ekstein(10) and Gerjuoy.(11) Faddeév’s equations reduce to those of Amado when we make special assumptions on the two-particle interaction following Lovelace,(12) but they also provide a basis for a more detailed treatment of the problem using unrestricted two-particle interactions. Having obtained Faddeév’s equations, we next use them in a few applications of special interest and discuss: Hetherington and Schick’s work(13–15) on rescattering corrections in kaon-deuteron (K–D) scattering; Lovelace and Phillips’ work(16) on n–D scattering; three-meson scattering in a pseudorelativistic generalization(17); and three-particle correlation energies in nuclear matter.(18–20)


Separable Potential Faddeev Equation Energy Shell Triton Binding Energy Inelastic Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Amado, Phys. Rev. 132:485 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    R. Aaron, R. Amado, and Y. Yam, Phys. Rev. 136:B650 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    R. Aaron, R. Amado, and Y. Yam, Phys. Rev. 140:B1291 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    R. Aaron and R. Amado, Phys. Rev. 150:857 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    R. Amado, Phys. Rev. 141:902 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    L. Faddeév, Soviet Phys. JETP (English Transl.) 12:1014 (1961).Google Scholar
  7. 7.
    L. Faddeév, Soviet Phys. “Doklady” (English Transl.) 6:384 (1961).ADSGoogle Scholar
  8. 8.
    L. Faddeév, Soviet Phys. “Doklady” (English Transl.) 7:600 (1963).ADSGoogle Scholar
  9. 9.
    L. Faddeév, “Mathematical Problems of the Quantum Theory of Scattering for a Three-Particle System.” Publication of the Steklov Mathematical Institute, Leningrad (1963); and H. M. Stationery Office, Harwell, Eng. (1964).Google Scholar
  10. 10.
    H. Ekstein, Phys. Rev. 101:880 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    E. Gerjuoy, Phys. Rev. 109:1806 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    C. Lovelace, Phys. Rev. 135:B1225 (1964).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J. Hetherington and L. Schick, Phys. Rev. 137:B935 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    J. Hetherington and L. Schick, Phys. Rev. 139:B1164 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    J. Hetherington and L. Schick, Phys. Rev. 141:1314 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    A. Phillips, Phys. Rev. 142:984 (1966).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R. Omnes, Phys. Rev. 134:B1358 (1964).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    H. Bethe, Phys. Rev. 138:B804 (1965).ADSCrossRefGoogle Scholar
  19. See also H. Bethe, Phys. Rev. 158:941 (1967), for modifications of the first results.ADSCrossRefGoogle Scholar
  20. 19.
    A. Petschek, Phys. Rev. 154:934 (1967).ADSCrossRefGoogle Scholar
  21. 20.
    B. Day, Phys. Rev. 151:826 (1966).ADSCrossRefGoogle Scholar
  22. 21.
    M. Verde, in “Handbuch der Physik” (S. Flugge, ed.) Vol. 34, Springer-Verlag, Berlin (1957).Google Scholar
  23. 22.
    L. Schick, Rev. Mod. Phys. 33:608 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 23.
    D. Feldman and K. Kowalski, Phys. Rev. 130:276 (1963).ADSMATHCrossRefGoogle Scholar
  25. 24.
    D. Koehler and R. Mann, Phys. Rev. 135:B91 (1964).MathSciNetADSCrossRefGoogle Scholar
  26. 25.
    J. Blatt and V. Weisskopf, “Theoretical Nuclear Physics,” John Wiley and Sons, Inc., New York (1952).MATHGoogle Scholar
  27. S. Frautschi, “Regge Poles and S-Matrix Theory,” W. A. Benjamin, Inc., New York (1963).MATHGoogle Scholar
  28. 26.
    M. Moravcsik, “The Two-Nucleon Interaction,” Oxford University Press, New York (1963).MATHGoogle Scholar
  29. 27.
    R. Courant and D. Hilbert, “Methods of Mathematical Physics,” Interscience Publishers, Inc. (now John Wiley and Sons, Inc.), New York (1963).Google Scholar
  30. 28.
    M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135:B202 (1964).MathSciNetADSCrossRefGoogle Scholar
  31. 29.
    W. Hunziker, Helv. Phys. Acta 34:593 (1961).MathSciNetMATHGoogle Scholar
  32. 30.
    A. Grossmann and T. T. Wu, J. Math. Phys. 2:710 (1961).ADSMATHCrossRefGoogle Scholar
  33. 31.
    Y. Yamaguchi, Phys. Rev. 95:1628 (1954).ADSCrossRefGoogle Scholar
  34. 32.
    Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95:1635 (1954).ADSCrossRefGoogle Scholar
  35. 33.
    F. Tabakin, Ann. Phys. (N.Y.) 30:51 (1964).ADSCrossRefGoogle Scholar
  36. F. Tabakin, Phys. Rev. 137:B75 (1965).ADSCrossRefGoogle Scholar
  37. 34.
    J. Naqvi, Nucl. Phys. 58:289 (1964).CrossRefGoogle Scholar
  38. 35.
    E. Baranger, M. Baranger, and T. Kuo, Nucl. Phys. 81:241 (1966).CrossRefGoogle Scholar
  39. 36.
    I. Duck and W. Pearce, Phys. Rev. Letters 21:669 (1966).Google Scholar
  40. 37.
    D. Wong and G. Zambotti, Phys. Rev. 154:1540 (1967).ADSCrossRefGoogle Scholar
  41. J. Gillespie, Phys. Rev. 160:1432 (1967).ADSCrossRefGoogle Scholar
  42. 38.
    S. Weinberg, Phys. Rev. 133:B232 (1964).MathSciNetADSCrossRefGoogle Scholar
  43. 39.
    S. Weinberg, Phys. Rev. 130:776 (1963).MathSciNetADSCrossRefGoogle Scholar
  44. 40.
    M. Vaughn, R. Aaron, and R. Amado, Phys. Rev. 124:1258 (1961).ADSMATHCrossRefGoogle Scholar
  45. 41.
    K. Greider and L. Dodd, Phys. Rev. 146:671 (1966).MathSciNetADSCrossRefGoogle Scholar
  46. 42.
    R. Wilson, “The Nucleon-Nucleon Interaction,” Interscience Publishers, Inc. (now John Wiley and Sons, Inc.), New York (1961).Google Scholar
  47. Also, M. Moravcsik, “The Two-Nucleon Interaction,” Oxford University Press, New York (1963).MATHGoogle Scholar
  48. 43.
    M. Cerineo, K. Ilakovac, I. Slaus, P. Tomas, and V. Velkovic, Phys. Rev., 133:B948 (1964).ADSCrossRefGoogle Scholar
  49. 44.
    K. Watson, Phys. Rev. 88:1163 (1952).ADSMATHCrossRefGoogle Scholar
  50. 45.
    R. Haddock, R. Salter, Jr., M. Zeller, J. Czin, and D. Nygren, Phys. Rev. Letters 14:318 (1965).ADSCrossRefGoogle Scholar
  51. 46.
    P. Shanley, Thesis, Northeastern University, Chicago, Ill. (1966).Google Scholar
  52. R. Aaron and P. Shanley, Phys. Rev. 142:608 (1966).ADSCrossRefGoogle Scholar
  53. 47.
    R. Aaron, Phys. Rev. 151:1293 (1966).ADSCrossRefGoogle Scholar
  54. 48.
    L. Rosenberg, Phys. Rev. 134:B937 (1964).ADSCrossRefGoogle Scholar
  55. 49.
    A. Mitra, Nucl. Phys. 32:529 (1962).MATHCrossRefGoogle Scholar
  56. 50.
    A. Mitra and V. Bhasin, Phys. Rev. 131:1265 (1963).ADSCrossRefGoogle Scholar
  57. 51.
    Y. Bhasin, G. Schrenk, and A. Mitra, Phys. Rev. 137:B398 (1965).ADSCrossRefGoogle Scholar
  58. 52.
    B. Bhakar and A. Mitra, Phys. Rev. Letters 14:143 (1965).MathSciNetADSCrossRefGoogle Scholar
  59. 53.
    A. Mitra, G. Schrenk, and V. Bhasin, Ann. Phys. (N.Y.) 40:357 (1966).ADSCrossRefGoogle Scholar
  60. G. Schrenk and A. Mitra, Phys. Rev. Letters 19:530 (1967).ADSCrossRefGoogle Scholar
  61. 54.
    B. Bhakar, Nucl. Phys. 46:572 (1963).CrossRefGoogle Scholar
  62. 55.
    V. Bhasin, Nucl. Phys. 58:636 (1964).CrossRefGoogle Scholar
  63. 56.
    D. Stojanov and A. Tavkhelidze, Phys. Rev. Letters 13:76 (1964).MathSciNetGoogle Scholar
  64. 57.
    U. Shelest and D. Stojanov, Phys. Rev. Letters 13:253 (1964).MathSciNetCrossRefGoogle Scholar
  65. 58.
    V. Alessandrini and R. Omnes, Phys. Rev. 139:B167 (1965).MathSciNetADSCrossRefGoogle Scholar
  66. 59.
    D. Freedman, C. Lovelace, and J. Namyslowski, Nuovo Cimento 43:258 (1966).ADSCrossRefGoogle Scholar
  67. 60.
    A. Ahmadzadeh and J. Tjon, Phys. Rev. 139:B1085 (1965).ADSCrossRefGoogle Scholar
  68. A. Ahmadzadeh and J. Tjon, Phys. Rev. 147:1111 (1966).ADSCrossRefGoogle Scholar
  69. W. Dunn and R. Ramachandran, Phys. Rev. 153:1558 (1967).ADSCrossRefGoogle Scholar
  70. I. Barbour and R. Schult, Phys. Rev. 155:1712 (1967).ADSCrossRefGoogle Scholar
  71. 61.
    J. Basdevant and R. Kreps, Phys. Rev. 141:1398 (1966).MathSciNetADSCrossRefGoogle Scholar
  72. 62.
    J. Basdevant and R. Kreps, Phys. Rev. 141:1404 (1966).MathSciNetADSCrossRefGoogle Scholar
  73. 63.
    J. Basdevant and R. Kreps, Phys. Rev. 141:1409 (1966).MathSciNetADSCrossRefGoogle Scholar
  74. 64.
    J. Basdevant and R. Omnes, Phys. Rev. Letters 17:114 (1966).CrossRefGoogle Scholar
  75. 65.
    R. Rajaraman, Phys. Rev. 131:1244 (1963).MathSciNetADSCrossRefGoogle Scholar
  76. 66.
    S. Moszkowski, Phys. Rev. 140:B283 (1965).MathSciNetADSCrossRefGoogle Scholar
  77. B. Bhaker and R. McCarthy, Phys. Rev., to be published.Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Ian Duck

There are no affiliations available

Personalised recommendations