The Hartree-Fock Theory of Deformed Light Nuclei

  • Georges Ripka


The existence of rotational bands in nuclei of the 2s-1d shell (16 < A < 40) and to a lesser extent in those of the 1p shell (4 < A < 16) has been recognized for a long time. The main features of such bands are the approximate proportionality to J(J + 1) of the energy levels and the strong quadrupole transition moments and static moments. Although these aspects are not as striking in a light nucleus as they are among the heavy deformed ones, the interpretation of the experimental data in terms of a rotating deformed intrinsic state seems unescapable. This article is concerned with the calculation and the study of the deformations in light nuclei with the Hartree-Fock (H.F.) method.


Quadrupole Moment Rotational Band Slater Determinant Occupied Orbit Intrinsic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 27 (16) (1953) (3rd ed., 1964).Google Scholar
  2. 2.
    A. Messiah, “Quantum Mechanics,” North-Holland Publishing Co., Amsterdam, (1961) and Dunod, Paris (1959).Google Scholar
  3. 3.
    D. Kurath and L. Picman, Nucl. Phys. 10:313 (1959).CrossRefGoogle Scholar
  4. 4.
    S. G. Nilsson, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 29 (16) (1955).Google Scholar
  5. 5.
    A. Volkov, Nucl. Phys. 74:33 (1965).CrossRefGoogle Scholar
  6. 6.
    J. Hayward, Nucl. Phys. 81:193 (1966).Google Scholar
  7. D. M. Brink, E. Boecker, Nucl. Phys. A91:1 (1967).ADSCrossRefGoogle Scholar
  8. R. Muthukrishnan, Nucl. Phys. A93:417 (1967).ADSCrossRefGoogle Scholar
  9. 7.
    I. Kelson, Phys. Rev. 132:2189 (1963).ADSCrossRefGoogle Scholar
  10. 8.
    I. Kelson and C. A. Levinson, Phys. Rev. 134:B269 (1964).ADSCrossRefGoogle Scholar
  11. 9.
    W. H. Bassichis, C. A. Levinson, and I. Kelson, Phys. Rev. 136:B380 (1964).ADSCrossRefGoogle Scholar
  12. 10.
    G. Ripka, “Lectures in Theoretical Physics,” Vol. VIII C, University of Colorado Press, Boulder, 1966.Google Scholar
  13. 11.
    J. Bar-Touv and C. A. Levinson, Phys. Rev. 153:1099 (1967).ADSCrossRefGoogle Scholar
  14. 12.
    J. Bar-Touv and I. Kelson, Phys. Rev. 138:B1035 (1965).ADSCrossRefGoogle Scholar
  15. 13.
    J. P. Elliott, “Selected Topics in Nuclear Theory,” IAEA, Vienna (1963).Google Scholar
  16. M. Moshinsky, in “Group Theory and the Many Body Problem” Gordon and Breach, New York, 1965.Google Scholar
  17. M. Harvey, review article in this volume.Google Scholar
  18. 14.
    W. H. Bassichis and G. Ripka, Phys. Letters 15:320 (1965).ADSCrossRefGoogle Scholar
  19. 15.
    W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters 15:930 (1965).ADSCrossRefGoogle Scholar
  20. 16.
    I. Kelson, Phys. Letters 16:143 (1965).ADSCrossRefGoogle Scholar
  21. G. J. Stephenson and M. Banerjee, to be published in Phys. Letters.Google Scholar
  22. 17.
    G. Ripka, Lectures delivered at the Institute of Theoretical Physics in Trieste, IAEA, Vienna, 1966.Google Scholar
  23. G. Ripka (Ref. 21).Google Scholar
  24. 18.
    K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys. 84:545 (1966).CrossRefGoogle Scholar
  25. 19.
    R. Hofstadter, “Electron Scattering and Nuclear and Nucleon Structure,” W. A. Benjamin, Inc., New York (1963).MATHGoogle Scholar
  26. 20.
    V. Gillet and E. Sanderson, Nucl. Phys. 31:292 (1967).CrossRefGoogle Scholar
  27. 21.
    G. Ripka, International Conference on Nuclear Physics Gaitlinburg, Tenn. (1966).Google Scholar
  28. S. Das Gupta and M. Harvey, Nucl. Phys. A94:593 (1967).ADSGoogle Scholar
  29. 22.
    G. E. Brown and A. M. Green, Nucl. Phys. 75:401 (1966).CrossRefGoogle Scholar
  30. 23.
    M. Banerjee, private communication.Google Scholar
  31. 24.
    A. Volkov, private communication.Google Scholar
  32. R. Muthukrishnan (Ref. 6).Google Scholar
  33. 25.
    R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London), A70:381 (1957).MathSciNetADSCrossRefGoogle Scholar
  34. 26.
    D. L. Hill and J. A. Wheeler, Phys. Rev. 89:1106 (1953).ADSGoogle Scholar
  35. 27.
    B. J. Verhaar, Nucl. Phys. 54:641 (1964).CrossRefGoogle Scholar
  36. 28.
    J. A. Kuehner and R. W. Ollerhead, Phys. Letters 20:301 (1966).ADSCrossRefGoogle Scholar
  37. 29.
    J. N. Smirnov, Nucl. Phys. 39:346 (1962).MATHCrossRefGoogle Scholar
  38. 30.
    L. Zamick and G. Ripka, Phys. Letters 23:347 (1966).ADSCrossRefGoogle Scholar
  39. 31.
    H. A. Mavromatis, L. Zamick, and G. E. Brown, Nucl. Phys. 80:545 (1966).CrossRefGoogle Scholar
  40. 32.
    M. de Llano, P. A. Mello, E. Chacon, and J. Flores, Nucl. Phys. 72:379 (1965).CrossRefGoogle Scholar
  41. 33.
    D. R. Inglis, Phys. Rev. 96:1059 (1954).ADSMATHCrossRefGoogle Scholar
  42. 34.
    B. Mottelson, “The Many Body Problem,” École d’Été de Physique Théorique, Les Houches, Dunod, Paris (1958) and John Willey and Sons, Inc., New York (1958).Google Scholar
  43. 35.
    C. W. Wong, Nucl. Phys. A91:399 (1967).ADSCrossRefGoogle Scholar
  44. T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85:40 (1966).CrossRefGoogle Scholar
  45. B. H. Brandow, “The theory of Effective Interaction,” Varenna Summer School Seminar (1965).Google Scholar
  46. A. D. Mackellar and R. L. Becker, Phys. Letters 18:308 (1965).ADSCrossRefGoogle Scholar
  47. C. M. Shakin, J. P. Svenne, and Y. P. Waghmare, Phys. Letters 21:209 (1966).ADSCrossRefGoogle Scholar
  48. See also the contributions of M. Baranger, H. A. Bethe, W. H. Bassichis, A. K. Kerman and J. P. Svenne to the International Conference on Nuclear Physics Gatlinburg, Tenn. (1966).Google Scholar
  49. 36.
    V. Gillet, Nucl. Phys. 51:410 (1964) Thesis, University of Paris (1962).CrossRefGoogle Scholar
  50. 37.
    J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) A229:536 (1965).ADSGoogle Scholar
  51. 38.
    Carter, Mitchell, and Davis, Phys. Rev. 133:B1421 (1964).ADSCrossRefGoogle Scholar
  52. 39.
    N. Vinh-Mau and G. Brown, Phys. Rev. Letters 1:361 (1962).Google Scholar
  53. 40.
    J. M. Eisenberg, M. Spicer, and M. E. Rose, Nucl. Phys. 71:273 (1965).CrossRefGoogle Scholar
  54. 41.
    G. Ripka, Proc. Paris Conf. Nucl. Structure C174 (1964).Google Scholar
  55. L. Zamick, Phys. Letters 19:580 (1965).ADSCrossRefGoogle Scholar
  56. 42.
    S. Gorodetzky, P. Mennrath, N. Benenson, P. Chevalier, and F. Scheibling, J. Phys. Radium 24 (1963).Google Scholar
  57. 43.
    I. Unna and I. Talmi, Phys. Rev. 112:452 (1958).ADSCrossRefGoogle Scholar
  58. 44.
    M. K. Banerjee and G. J. Stephenson, Jr., “Shape of the four particle-four hole state of 16O,” to be published.Google Scholar
  59. 45.
    E. Boecker, Phys. Letters 21:69 (1966).ADSCrossRefGoogle Scholar
  60. L. S. Celenza and A. Klein, to be published.Google Scholar
  61. 46.
    I. Kelson, Phys. Rev. 134:B267 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Georges Ripka

There are no affiliations available

Personalised recommendations