Regulation of Terpenoid Biosynthesis in Higher Plants

  • Charles A. West
  • Mark W. Dudley
  • Michael T. Dueber
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 13)


Consider the following general facts in relation to the need for regulation of the pathways for biosynthesis of terpenoid compounds in higher plants. Higher plants produce a wide array of terpenoid compounds including monoterpenes, sesquiterpenes, diterpenes, triterpenes and sterols, tetraterpenoid carotenes and xanthophylls, long-chain polyprenyls, and mixed terpenoids that contain an isoprenoid moiety as an integral part of their structures. A single plant species may produce many terpenoid substances including representatives from most or all of these groups. Some terpenoids, such as sterols, gibberellins, carotenes, and the chlorophyll pigments with their polyprenyl side-chains, presumably are produced in all higher green plants. Other terpenoids are formed much more selectively by a few species. Some terpenoids are produced in large quantities and others only in traces.


Castor Bean Energy Charge Adenylate Energy Charge Terpenoid Biosynthesis Terpenoid Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hedden, P., J. MacMillan and B. O. Phinney. 1978. The metabolism of gibberellins. Annu. Rev. Plant Physiol.29:149–192.CrossRefGoogle Scholar
  2. 2.
    Jones, R. L. 1973. Gibberellins: their physiological role. Annu. Rev. Plant Physiol. 24:571–598.CrossRefGoogle Scholar
  3. 3.
    Atkinson, D.E. 1969. The enzymes as control elements in metabolic regulation. In “The Enzymes” (P. D. Boyer, ed.) 3rd Ed. 1:461–489. Academic Press, New York.Google Scholar
  4. 4.
    Knotz, J., R. C. Coolbaugh and C. A. West. 1977. Regulation of the biosynthesis of ent-kaurene from meva-lonate in the endosperm of immature Marah macrocarpus seeds by adenylate energy charge. Plant Physiol. 60:81–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Gray, J. C., and R. G. O. Kekwick. 1973. Mevalonate kinase in green leaves and etiolated cotyledons of the French bean Phaseolus vulgaris. Bio-chem. J. 130:983–995.Google Scholar
  6. 6.
    Hanson, J. F. and A. J. White. 1969. Studies in terpenoid biosynthesis. Part IV. Biosynthesis of the kaurenolides and gibberellic acid. J. Chem. Soc. (C):981–985.Google Scholar
  7. 7.
    Shechter, I. and C. A. West. 1969. Biosynthesis of gibberellins. IV. Biosynthesis of cyclic diterpenes from trans-geranylgeranyl pyrophosphate. J. Biol. Chem. 244:3200–3209.PubMedGoogle Scholar
  8. 8.
    Fall, R. R. and C. A. West. 1971. Purification and properties of kaurene synthetase from Fusarium moni-liforme. J. Biol. Chem. 246:6913–6928.PubMedGoogle Scholar
  9. 9.
    Frost, R. G. and C. A. West. 1977. Properties of kaurene synthetase from Marah macrocarpus. Plant Physiol. 59:22–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Buggy, M. J., G. Britton and T. W. Goodwin. 1974. Terpenoid biosynthesis by chloroplasts isolated in organic solvents. Phytochemistry 13:125–129.CrossRefGoogle Scholar
  11. 11.
    Shah, D. V., D. H. Feldbuegge, A. R. Houser and J. W. Porter. 1968. Conversion of 14C-labeled geranyl geranyl pyrophosphate to phytoene by a soluble tomato plastid system. Arch. Biochem. Biophys. 127:124–131.PubMedCrossRefGoogle Scholar
  12. 12.
    Rudinger, W., J. Benz, V. Lempert, S. Schock and D. Steffens. 1976. Inhibition of phytol accumulation with herbicides. Geranylgeraniol and dihydrogeranyl-geraniol-containing chlorophyll from wheat seedlings. Z. Pflanzenphysiol. 80:131–143.Google Scholar
  13. 13.
    Rudinger, W., P. Hedden, H.-P. Kost and D. J. Chapman. 1977. Esterification of chlorophyllide by geranyl-geranyl pyrophosphate in a cell-free system from maize shoots. Biochem. Biophys. Res. Commun. 74:1268–1272.CrossRefGoogle Scholar
  14. 14.
    Goodwin, T. W. 1977. In “Lipids and Lipid Polymers in Higher Plants” (M. Tevini and H. K. Lichtenthaler, eds.) pp. 29–47. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  15. 15.
    Robinson, D. R. and C. A. West. 1970. Biosynthesis of cyclic diterpenes in extracts from seedlings of Ricinus communis L. II. Conversion of geranyl-geranyl pyrophosphate into diterpene hydrocarbons and partial purification of the cyclization enzymes. Biochemistry 9:80–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Moore, T. C. and R. C. Coolbaugh. 1976. Conversion of geranylgeranyl pyrophosphate to ent-kaurene in enzyme extracts of sonicated chloroplast. Phytochemistry 15:1241–1247.CrossRefGoogle Scholar
  17. 17.
    Simcox, P. D., D. T. Dennis and C. A. West. 1975. Kaurene synthetase from plastids of developing plant tissues. Biochem. Biophys. Res. Commun. 66: 166–172.PubMedCrossRefGoogle Scholar
  18. 18.
    Maudinas, B., M. L. Bucholtz, C. Papastephanou, S. S. Katiyar, A. V. Briedis and J. W. Porter. 1977. The partial purification and properties of a phytoene-synthesizing enzyme system. Arch. Biochem. Biophys. 180:354–362.PubMedCrossRefGoogle Scholar
  19. 19.
    Dudley, M. W., T. R. Green and C. A. West, unpublished results.Google Scholar
  20. 20.
    Dueber, M. T., W. Adolf and C. A. West. 1978. Biosynthesis of the diterpene phytoalexin casbene: partial purification and characterization of casbene synthetase from Ricinus communis. Plant Physiol. 62: (in press).Google Scholar
  21. 21.
    Simcox, P. D. 1976. The synthesis of kaurene and related diterpenes in higher plants. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  22. 22.
    Yafin, Y. and I. Shechter. 1975. Comparison between biosynthesis of ent-kaurene in germinating tomato seeds and cell suspension cultures of tomato and tobacco. Plant Physiol. 56:671–675.PubMedCrossRefGoogle Scholar
  23. 23.
    Dennis, D. T., C. D. Upper and C. A. West. 1965. An enzymatic site of inhibition of gibberellin biosyn-thesis by AMO-1618 and other plant growth retardants. Plant Physiol. 40:948–952.PubMedCrossRefGoogle Scholar
  24. 24.
    Coolbaugh, R. C. and R. Hamilton. 1976. Inhibition of ent-kaurene oxidation and growth by α-cyclopro-pyl-α-(p-methoxyphenyl)-5-pyrimidine methyl alcohol. Plant Physiol. 57:245–248.PubMedCrossRefGoogle Scholar
  25. 25.
    Tschabold, E. E., H. M. Taylor, J. D. Davenport, R. E. Hackler, E. V. Krumkalms and W. C. Meredith. 1970. A new plant growth regulator. Plant Physiol. 46:5–19.Google Scholar
  26. 26.
    Coolbaugh, R. C., S. S. Hirano and C.A. West. 1978. Studies on the specificity and site of action of α-cyclopropyl-α-(]3-methoxyphenyl)-5-pyrimidine methyl alcohol (ancymidol), a plant growth regulator. Plant Physiol. 62:(in press).Google Scholar
  27. 27.
    Dennis, D. T. and C. A. West. 1967. Biosynthesis of gibberellins. III. The conversion of (-)-kau-rene to (-)-kaurene to (-)-kauren-19-oic acid in endosperm of Echinocystis macrocarpa Greene. J. Biol. Chem. 242:3293–3300.PubMedGoogle Scholar
  28. 28.
    Lew, F. T. and C. A. West. 1971. (-)-Kauren-7β-ol-19-oic acid, an intermediate in gibberellin biosynthesis. Phytochemistry 10:2065–2076.CrossRefGoogle Scholar
  29. 29.
    Cruikshank, I. A. M. 1977. A review of the role of phytoalexins in disease resistance mechanisms. In “Natural Products and the Protection of Plants.” pp. 509–569. Pontificiae Academiae Scientarum Scripta Varia.Google Scholar
  30. 30.
    Ingham, J. L. 1972. Phytoalexins and other natural products as factors in plant desease resistance. Bot. Rev. 38:343–424.CrossRefGoogle Scholar
  31. 31.
    Ingham, J. L. 1973. Disease resistance in higher plants. The concept of pre-infectional and post-infectional resistance. Phytopath. Z. 78:314–335.CrossRefGoogle Scholar
  32. 32.
    Kuc, J. 1972. Phytoalexins. Annu. Rev. Phytopath ol. 10:207–232.CrossRefGoogle Scholar
  33. 33.
    Stoessl, A., J. B. Stothers and E. W. B. Ward. 1976. Sesquiterpenoid stress compounds of the So-lanaceae. Phytochemistry 15:855–872.CrossRefGoogle Scholar
  34. 34.
    Muller, K. O. and H. Borger. 1940. Experimentelle Untersuchungen uber die Phytophthora-Resistant der Kartoffel. Arb. Biol. Reichanst. Landw. Forstwirtsch., Berlin-Dahlem 23:189–231.Google Scholar
  35. 35.
    Muller, K. O. 1958. Studies on phytoalexins. I. The formation and the immunological significance of phy-toalexin produced by Phaseolus vulgaris in response to infections with Sclerotinia fructicola and Phyto-phthora infestans. Australian J. Biol. Sci. 11:275–300.Google Scholar
  36. 36.
    Cruikshank, I. 1963. Phytoalexins. Annu. Rev. Phytopathol. 1:351–374.CrossRefGoogle Scholar
  37. 37.
    Sitton, D. and C. A. West. 1975. An anti-fungal diter-pene produced in cell-free extracts of Ricinus communis seedlings. Phytochemistry 14:1921–1925.CrossRefGoogle Scholar
  38. 38.
    Robinson, D. R. and C. A. West. 1970. Biosynthesis of cyclic diterpenes in extracts from seedlings of Ricinus communis L. I. Identification of diterpene hydrocarbons formed from mevalonate. Biochemistry 9:70–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Crombie, L., G. Kneen and G. Pattenden. 1976. Synthesis of casbene. J. Chem. Soc, Chem. Commun.: 66–68.Google Scholar
  40. 40.
    Cartwright, D., P. Langcake, R. J. Pryce and D. P. Leworthy. 1977. Chemical activation of host defence mechanisms as a basis for crop protection. Nature (London) 267:511–513.CrossRefGoogle Scholar
  41. 41.
    Keen, N. T., J. E. Partridge and A. I. Zaki. 1972. Pathogen-produced elicitors of a chemical defense mechanism in soybeans monogenically resistant to Phytophthora megasperma var. sojae. Phytopathology 62:768.Google Scholar
  42. 42.
    Stekoll, M. and C. A. West. 1978. Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolon-ifer. Plant Physiol. 61:38–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Albersheim, P. and A. J. Anderson-Prouty. 1975. Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis. Ann. Rev. Plant Physiol., 26:31–52.CrossRefGoogle Scholar
  44. 44.
    Keen, N. T. and B. Bruegger. 1977. Phytoalexins and chemicals that elicit their production in plants. In “Host Plant Resistance to Pests, ACS Symposium Series, No. 62” (P. A. Hedin, ed.). pp. 1–26. Am. Chem. Soc, Washington.CrossRefGoogle Scholar
  45. 45.
    Green, T. R. and C. A. West. 1974. Purification and characterization of two forms of geranyl transferase from Ricinus communis. Biochemistry 13:4720–4729.PubMedCrossRefGoogle Scholar
  46. 46.
    Cooper, T. G. and H. Beevers. 1969. Mitochondria and glyoxysomes from castor bean endosperm. En-zyme constituents and catalytic capacity. J. Biol. Chem. 244:3507–3513.PubMedGoogle Scholar
  47. 47.
    Green, T. R., D. T. Dennis and C. A. West. 1975. Com-partmentation of isopentenyl pyrophosphate isomerase and prenyl transferase in developing castor bean endosperm. Biochem. Biophys. Res. Commun. 64:976–982.PubMedCrossRefGoogle Scholar
  48. 48.
    Gomez-Navarrete, G. and T. C. Moore. 1978. Effect of protein synthesis inhibitors on ent-kaurene biosynthesis during photomorphogenesis of etiolated pea seedlings. Plant Physiol. 61:889–892.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshikawa, M., K. Yamauchi and H. Masago. 1978. De novo messenger RNA and protein synthesis are required for phytoalexin-mediated disease resistance in soybean hypocotyls. Plant Physiol. 61:314–317.PubMedCrossRefGoogle Scholar
  50. 50.
    McFarlene, J., K. M. Madyastha and C. J. Coscia. 1975. Regulation of secondary metabolism in higher plants. Effect of alkaloids on a cytochrome P-450 dependent monooxygenase. Biochem. Biophys. Res. Commun. 66:1263–1269.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Charles A. West
    • 1
  • Mark W. Dudley
    • 1
  • Michael T. Dueber
    • 1
  1. 1.Division of Biochemistry, Department of ChemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations