Advertisement

Enzymology of Indole Alkaloid Biosynthesis

  • K. M. Madyastha
  • Carmine J. Coscia
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 13)

Abstract

The monoterpenoid indole alkaloids are a large family of structurally diverse compounds encompassing some of the most important plant medicinais discovered by man. Although these alkaloids were one of the last major groups of well-known natural products to have their biogenesis delineated, they have become one of the first classes of plant secondary metabolites to be studied at the enzymatic level. A contributory factor has been the excellent progress made by in vivo tracer work, which within a little more than a decade has led to the elucidation of the major features of a highly complicated pathway1,2.

Keywords

Hydroxylase Activity Heme Protein Indole Alkaloid Papaver Somniferum Alkaloid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordell, G. A. 1974. The biosynthesis of indole alkaloids. Lloydia 37:219–298.PubMedGoogle Scholar
  2. 2.
    Leete, E. 1977. Alkaloid biosynthesis. Specialist Periodical Reports, Biosynthesis, 5:136–239.CrossRefGoogle Scholar
  3. 3.
    Coscia, C. J., L. Botta and R. Guarnaccia. 1970. Monoterpene biosynthesis III. On the mechanism of iridoid and secoiridoid monoterpene biosynthesis. Arch. Biochem. Biophys. 136:498–506.PubMedCrossRefGoogle Scholar
  4. 4.
    Battersby, A. R., S. H. Brown and T. G. Payne. 1970. Biosynthesis of loganin and the indole alkaloids from hydroxygeraniol-hydroxynerol. J. Chem. Soc., Chem. Commun. 827–828.Google Scholar
  5. 5.
    Escher, S., P. Loew and D. Arigoni. 1970. The role of hydroxygeraniol and hydroxynerol in the biosynthesis of loganin and indole alkaloids. J. Chem. Soc, Chem. Commun. 823–826.Google Scholar
  6. 6.
    Sumner, J. B. 1926. The isolation and crystallization of the enzyme urease. J. Biol. Chem. 69:435–441.Google Scholar
  7. 7.
    Leete, E. 1969. Alkaloid biosynthesis. Adv. Enzymol. 32:373–422.PubMedGoogle Scholar
  8. 8.
    Loomis, W. D. 1974. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Meth. Enzymol. 31A:528–544.PubMedCrossRefGoogle Scholar
  9. 9.
    Madyastha, K. M., T. D. Meehan and C. J. Coscia. 1976. Characterization of cytochrome P-450 dependent monoterpene hydroxylase from the higher plant V. rosea. Biochemistry 15:1097–1102.PubMedCrossRefGoogle Scholar
  10. 10.
    McFarlane, J., unpublished observations.Google Scholar
  11. 11.
    Patterson, B. D. and D. P. Carew. 1969. Growth and alkaloid formation in Catharanthus roseus tissue cultures. Lloydia 32:131–140.PubMedGoogle Scholar
  12. 12.
    Baxter, C., unpublished results.Google Scholar
  13. 13.
    Scott, A. I., and S. L. Lee. 1975. Biosynthesis of the indole alkaloids. A cell-free system from Catharanthus roseus. J. Am. Chem. Soc. 97:6906–6908.PubMedCrossRefGoogle Scholar
  14. 14.
    Stockigt, J., J. Treimer, M. H. Zenk. 1976. Synthesis of ajmalicine and related indole alkaloids by cell-free extracts of Catharanthus roseus cell suspension cultures. FEBS Lett. 70:267–270.PubMedCrossRefGoogle Scholar
  15. 15.
    Meehan, T. D. and C. J. Coscia. 1973. Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea. Biochem. Biophys. Res. Commun. 53:1043–1048.PubMedCrossRefGoogle Scholar
  16. 16.
    Hasson, E. P. and C. A. West. 1976. Properties of the system for the mixed function oxidation of kaurene seed of Marah macrocarpus. Plant Physiol. 58:479–484.PubMedCrossRefGoogle Scholar
  17. 17.
    Murphy, P. J. and C. A. West. 1969. The role of mixed function oxidases in kaurene metabolism in Echinocystis macrocarpa Greene endosperm. Arch. Biochem. Biophys. 133:395–407.PubMedCrossRefGoogle Scholar
  18. 18.
    Frear, D. S., H. R. Swanson and F. S. Tanaka. 1969. N-Demethyalation of substituted 3-(phenyl)-l-methyl-ureas: isolation and characterization of a microsomal mixed function oxidase from cotton. Phytochemistry 8:2157–69.CrossRefGoogle Scholar
  19. 19.
    Young, O. and H. Beevers. 1976. Mixed function oxidases from germinating castor bean endosperm. Phytochemistry 15:379–385.CrossRefGoogle Scholar
  20. 20.
    Benveniste, I. and M. F. Durst. 1974. Mise en evidence dans les tissus de tubercule de topinambour d’une enzyme a cytochrome P-450, l’acide trans-cinnamique 4-hydroxylase. C. R. Acad. Sci. Paris 278:1487–1490.Google Scholar
  21. 21.
    Benveniste, I., J. Salaun, and F. Durst. 1977. Wounding-induced cinnamic acid hydroxylase in Jerusalem artichoke tuber. Phytochemistry 16:69–73.CrossRefGoogle Scholar
  22. 22.
    Potts, J. R. M., R. Weklych and E. E. Conn. 1974. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J. Biol. Chem. 249:5019–5026.PubMedGoogle Scholar
  23. 23.
    Russell, D. W. 1971. The metabolism of aromatic compounds in higher plants. J. Biol. Chem. 246:3870–3878.PubMedGoogle Scholar
  24. 24.
    Croteau, R. and P. E. Kolattukudy. 1975. Biosynthesis of hydroxy fatty acid polymers. Enzymatic epoxida-tion of 18-hydroxyoleic acid to 18-hydroxy-cis-9,10-epoxystearic acid by a particulate preparation from spinach. Arch. Biochem. Biophys. 170:61–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Soliday, C. L. and Kolattukudy, P. E. 1978. Midchain hydroxylation of 16-hydroxypalmitic acid by the endoplasmic reticulum fraction from germinating Vicia faba. Arch. Biochem. Biophys. 188:338–347.PubMedCrossRefGoogle Scholar
  26. 26.
    Markham, A., G. C. Hartman and D. V. Parke. 1972. Spectral evidence for the presence of cytochrome P-450 in microsomal fractions obtained from some higher plants. Biochem. J. 130:90P.Google Scholar
  27. 27.
    Rich, P. R. and D. S. Bendall. 1975. Cytochrome components of plant microsomes. Eur. J. Biochem. 55:333–341.PubMedCrossRefGoogle Scholar
  28. 28.
    Rich, P. R. and Lamb, C. J. 1977. Biophysical and enzymological studies upon the interaction of trans-cinnamic acid with higher plant microsomal cytochromes P-450. Eur. J. Biochem. 22, 353–360.CrossRefGoogle Scholar
  29. 29.
    Dus, K., personal communication.Google Scholar
  30. 30.
    Cohn, J. A., A. P. Alvares and A. Kappas. 1977. On the occurrence of cytochrome P-450 and aryl hydrocarbon hydroxylase activity in rat brain. J. Exptl. Med. 145:1607–1611.CrossRefGoogle Scholar
  31. 31.
    Galloway, M. P., unpublished observations.Google Scholar
  32. 32.
    Ishimaru, A. and I. Yamazaki. 1977. The carbon monoxide-binding heme protein reducible by hydrogen peroxide in microsomal fractions of pea seeds. J. Biol. Chem. 252:199–204.PubMedGoogle Scholar
  33. 33.
    Cotte-Martinon, M. G., V. Yahiel and G. Ducet. 1974. Induction d’un cytochrome du type P-450 et de Peroxydase durant la survie du tubercule de pomme de terre. Phytochemistry 13:2085–2090.CrossRefGoogle Scholar
  34. 34.
    Yahiel, V., M. G. Cotte-Martinon and G. Ducet. 1974. Un cytochrome de type £450 dans le spadice d’Arum. Phytochemistry 13:1649–1651.CrossRefGoogle Scholar
  35. 35.
    Lembi, C. A. and D. J. Morre. 1970. Isolation of plasma membrane-rich cell fractions from onion stem and corn coleoptiles. Plant Physiol. 46(Supp1.):14.Google Scholar
  36. 36.
    Madyastha, K. M., J. E. Ridgway, J. G. Dwyer and C. J. Coscia. 1977. Subcellular localization of a cytochrome P-450-dependent mono-oxygenase in vesicles of the higher plant Catharanthus roseus. J. Cell. Biol. 72:302–313.PubMedCrossRefGoogle Scholar
  37. 37.
    Morrow, C., unpublished results.Google Scholar
  38. 38.
    Licht, H. J. and C. J. Coscia. 1978. Cytochrome P-45OLM2 mediated hydroxylation of monoterpene alcohols Biochemistry, in press.Google Scholar
  39. 39.
    Coscia, C. J. and R. Guarnaccia. 1968. Natural occurrence and biosynthesis of a cyclopentanoid monoterpene carboxylic acid. J. Chem. Soc, Chem. Commun. 138–140.Google Scholar
  40. 40.
    Licht, H. J., unpublished observations.Google Scholar
  41. 41.
    Perez, L. M., L. Chavet, M. de la Fuente, M. C. Rojas, G. Portilla, U. Hashagen, L. A. Fernandez and O. Cori. 1978. Biosynthesis of mono- and sesquiterpe-noids by soluble enzymes from Citrus flavedo. Abst. Papers Joint Meet. Am. Soc. Pharmacog. Phytochem. Soc. of North Am., 1st, Stillwater, Oklahoma, August 14–17, 1978:18.Google Scholar
  42. 42.
    Christophe, J. and G. Popjak, 1961. Studies on the biosynthesis of cholesterol: XIV. The origin of prenoic acids from allyl pyrophosphates in liver enzyme systems. J. Lipid Res. 2:244–257.Google Scholar
  43. 43.
    Tsai, S. C. and J. L. Gaylor. 1966. Testicular sterols. V. Preparation and partial purification of a microsomal prenol pyrophosphate pyrophospho-hydrolase. J. Biol. Chem. 241:4043–4050.PubMedGoogle Scholar
  44. 44.
    Baisted, D. J. 1967. Incorporation of label from geraniol-14C into squalene, β-amyrin and 3-sitosterol in germinating pea seeds. Phytochemistry 6:93–97.CrossRefGoogle Scholar
  45. 45.
    Botta, L. 1968. Ph.D. Dissertation No. 4098 Eidg. Tech. Hochschule Zurich, Switzerland. Zur Biogenese von Verbindungen der Lupanreihe.Google Scholar
  46. 46.
    van Aller, R. T. and W. R. Nes. 1968. The phosphorylation of geraniol in germinating peas. Phytochemistry 7:85–88.CrossRefGoogle Scholar
  47. 47.
    Madyastha, K. M. and W. D. Loomis. 1969. Phosphorylation of geraniol by cell-free enzymes from Mentha piperita. Fed. Proc. 28:665.Google Scholar
  48. 48.
    Seubert, W. and E. Fass. 1964. Untersuchungen uber den bakteriellen Abbau von Isoprenoiden. Biochem. Z. 341:23–34.PubMedGoogle Scholar
  49. 49.
    Seubert, W. and U. Remberger. 1963. Untersuchungen über den bakteriellen Abbau von Isoprenoiden. Biochem. Z. 338:245–264.PubMedGoogle Scholar
  50. 50.
    Madyastha, K. M. and C. J. Coscia. 1974. Detergent-solubilized NADPH-cytochrome C (P-450) reductase from the higher plant, Catharanthus roseus: Purification and characterization. J. Biol. Chem. (in press).Google Scholar
  51. 51.
    Vermilion, J. L. and Coon, M. J. 1978. Purified liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem. 253:2695–2704.Google Scholar
  52. 52.
    Aoyama, Y., Y. Yoshida, S. Kubota, H. Kumaoka and A. Furumichi. 1978. NADPH-cytochrome P-450 reductase of yeast microsomes. Arch. Biochem. Biophys. 185:362–369.PubMedCrossRefGoogle Scholar
  53. 53.
    Fan, L. L. and B. S. S. Masters. 1974. Properties of purified kidney microsomal NADPH-cytochrome c reductase. Arch. Biochem. Biophys. 165:665–671.PubMedCrossRefGoogle Scholar
  54. 54.
    Yasukochi, Y. and B. S. S. Masters. 1976. Some properties of a detergent-sol ubi1ized NADPH-cytochrome C (cytochrome P-450) reductase purified by biospecific affinity chromatography. J. Biol. Chem. 251:5337–5344.PubMedGoogle Scholar
  55. 55.
    Buche, T. and H. Sandermann. 1973. Lipid dependence of plant microsomal cinnamic acid 4-hydroxylase. Arch. Biochem. Biophys. 158:445–447.PubMedCrossRefGoogle Scholar
  56. 56.
    Matile, P. 1966. Enzymes of vacuoles from rootlets of corn seedlings. A contribution to the functional significance of vacuoles to intracellular digestion. Z. Naturforsch. 21b:871–878.Google Scholar
  57. 57.
    Lord, J. M., T. Kagawa, T. S. Moore and H. Beevers. 1973. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J. Cell Biol. 57:659–667.PubMedCrossRefGoogle Scholar
  58. 58.
    Williamson, F. A., D. J. Morre and M.J. Jaffe. 1975. Association of phytochrome with rough-surfaced endoplasmic reticulum fractions from soybean hypocotyls. Plant Physiol. 56; 738–743.PubMedCrossRefGoogle Scholar
  59. 59.
    Takebe, I., Y. Otsuki and S. Aoki. 1968. Isolation of tobacco mesophyll cells in intact and active state. Plant Cell Physiol. 9:115–124.Google Scholar
  60. 60.
    Matile, Ph. and A. Wiemken. 1974. Vacuoles and spherosomes. Meth. Enzymol. 31A:572–578.PubMedCrossRefGoogle Scholar
  61. 61.
    Fairbairn, F. W., F. Hakim, and Y. E. Kheir. 1974. Alkaloidal storage, metabolism and translocation in the vesicles of Papaver somniferum latex. Phyto-chemistry 13:1133–1139.Google Scholar
  62. 62.
    Nessler, C. L. and P. G. Mahlberg. 1976. Laticifers in stamens of Papaver somniferum L. Planta 129:83–85.CrossRefGoogle Scholar
  63. 63.
    Nessler, C. L. and P. G. Mahlberg. 1977. Ontogeny and cytochemistry of alkaloidal vesicles in laticifers of Papaver somniferum L. (Papaveraceae). Amer. J. Bot. 64:541–551.CrossRefGoogle Scholar
  64. 64.
    Dickenson, P. B. and J. W. Fairbairn. 1975. The ultrastructure of the alkaloidal vesicles of Papaver somniferum latex. Ann. Bot. 39:707–712.Google Scholar
  65. 65.
    Antoun, M. D. and M. F. Roberts. 1975. Enzymic studies with Papaver somniferum. 5. The occurrence of methyl transferase enzymes in poppy latex. Planta Medica 28:6–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Escher, S. 1972. Stereochemische Aspekte der Biosynthase von Indolalkaloiden. Thesis Dissertation No. 4887. Eidg. Tech. Hochschule, Zurich, Switzerland.Google Scholar
  67. 67.
    Roberts, M. F. and M. D. Antoun. 1978. The relationship between L-DOPA decarboxylase in the latex of Papaver somniferum and alkaloid formation. Phytochemistry 17:1083–1087.CrossRefGoogle Scholar
  68. 68.
    Yoder, L. R. and P. G. Mahlberg. 1976. Reactions of alkaloid and histochemical indicators in laticifers and specialized parenchyma cells of Catharanthus roseus (apocynaceae). Am. J. Bot. 62:1167–1173.CrossRefGoogle Scholar
  69. 69.
    Meehan, T. D., unpublished observations.Google Scholar
  70. 70.
    Ridgway, J. E., unpublished results.Google Scholar
  71. 71.
    Neumann, D. and E. Muller. 1967. Intracellular detection of alkaloids in plant cells by light and electron microscopic criteria. Flora 158:479–491.Google Scholar
  72. 72.
    Bryan, J.K. 1976. Amino acid biosynthesis and its regulation, in plant Biochemistry. 3rd ed. Eds. J. Bonner and J. E. Varner, Academic Press, New York, 525–560.Google Scholar
  73. 73.
    Floss, H. G., J. E. Robbers and P. F. Heinstein. 1976. Regulatory control mechanism in alkaloid biosynthesis. Rec. Adv. Phytochem. 8:141–178.Google Scholar
  74. 74.
    Waller, G. R. and E. K. Nowacki. 1978. Alkaloid biology and metabolism in plants. Plenum Press, New York, New York.CrossRefGoogle Scholar
  75. 75.
    Gross, D., H. Lehman and H. P. Schutte. 1970. Zur Physiologie der Graminbildung. Z. Pflanzenphysiol. 63:1–9.Google Scholar
  76. 76a.
    Baxter, C. and M. Slaytor. 1972. Partial purification and some properties of tryptophan decarboxylase from Phalaris tuberosa. Phytochemistry 11:2763–2766;CrossRefGoogle Scholar
  77. 76a1.
    Baxter, C. and M. Slaytor. 1972. Biosynthesis and turnover of N, N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptami ne in Phalaris tuberosa. Ibid 11, 2767–2773.Google Scholar
  78. 76b.
    Mizusaki, S., Y. Tanabe, M. Noguchi, and E. Tamaki. 1973. Phytochemical studies on tobacco alkaloids XVI. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methyl-putrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol. 14:103–110.Google Scholar
  79. 77.
    McFarlane, J., K. M. Madyastha and C. J. Coscia. 1975. Regulation of secondary metabolism in higher plants. Effect of alkaloids on a cytochrome P-450 dependent monoxygenase. Biochem. Biophys. Res. Commun. 66:1263–1269.PubMedCrossRefGoogle Scholar
  80. 78a.
    Daddona, P. E., J. L. Wright and C. R. Hutchinson. 1976. Alkaloid catabolism and mobilization in Catharanthus roseus. Phytochemistry 15:941–945.CrossRefGoogle Scholar
  81. 78a1. Daddona, P. E., J. L. Wright and C. R. Hutchinson. personal communication.Google Scholar
  82. 79.
    Leete, E., A. Ahmad and I. Kompis. 1965. Biosynthesis of the Vinca alkaloids. I. Feeding experiments with tryptophan-2-C14 and acetate-4-C,14. J. Amer. Chem. Soc. 87:4168–4174.CrossRefGoogle Scholar
  83. 80.
    Guarnaccia, R., unpublished observations.Google Scholar
  84. 81.
    Battersby, A. R., J. C. Byrne, R. S. Kapil, J. A. Martin, T. G. Payne, D. Arigoni and P. Loew. 1968. The mechanism of indole alkaloid biosynthesis. J. Chem. Soc, Chem. Commun. 951–953.Google Scholar
  85. 82.
    Archer, B. L., D. Barnard, E. G. Cockbain, J. W. Cornforth, R. H. Cornforth and G. Popjak. 1966. The stereochemistry of rubber biosynthesis. Proc. Roy. Soc. B163:519–523.CrossRefGoogle Scholar
  86. 83a.
    Inouye, H., S. Ueda and S. Uesato. 1977. Zum Mechanismus der Methylcyclopentan-gerustbildung bei der Biosynthese einiger Iridoidglucoside. Tetrahedron Lett. 709–712;Google Scholar
  87. 83a.
    Inouye, H., S. Ueda and S. Uesato. 1977. Über die Biosynthese des Deutziosids, ibid 713–716.Google Scholar
  88. 84.
    Arigoni, D. 1975. Stereochemical aspects of sesquiterpene biosynthesis. Pure Appl. Chem. 41:219–245.CrossRefGoogle Scholar
  89. 85.
    Banthorpe, D. V., B. M. Modawi, I. Poots and M. G. Rowan. 1978. Redox interconversions of geraniol and nerol in higher plants. Phytochemistry 17:1115–1118.CrossRefGoogle Scholar
  90. 86.
    Chayet, L., R. Pont-Lezica, C. George-Nascimento and O. Cori. 1973. Biosynthesis of sesquiterpene alcohols and aldehydes by cell free extracts from orange flavedo. Phytochemistry 12:95–101.CrossRefGoogle Scholar
  91. 87.
    Mothes, K., I. Richter, K. Stolle and D. Groger. 1965. Physiologische Bedingungen der Alkaloid-synthese bei Catharanthus roseus G. Don. Naturwissenschaften 52:431.CrossRefGoogle Scholar
  92. 88.
    Jedlicki, E., G. Jacob, F. Faini, O. Cori and C. A. Bunton. 1972. Stereospecificity of isopentenylpyrophosphate isomerase and prenyl transferase from Pinus and Citrus. Arch. Biochem. Biophys. 152:590–596.PubMedCrossRefGoogle Scholar
  93. 89.
    Francis, M. J. O., D. V. Banthorpe and G. N. J. Le Patourel. 1970. Biosynthesis of monoterpenes in rose flowers. Nature 228:1005–1006.PubMedCrossRefGoogle Scholar
  94. 90.
    Shine, W. E. and Loomis, W. D. 1974. Isomerization of geraniol and geranyl phosphate by enzymes from carrot and peppermint. Phytochemistry 13:2095–2101.CrossRefGoogle Scholar
  95. 91.
    George-Nascimento, C. and O. Cori. 1971. Terpene biosynthesis from geranyl and neryl pyrophosphates by enzymes from orange flavedo. Phytochemistry 10:1803–1810.CrossRefGoogle Scholar
  96. 92.
    Bowman, R. M. and E. Leete. 1969. Observations on the administration of iridodial-7-14C to Vinca Rosea. Phytochemistry 8:1003–1007.CrossRefGoogle Scholar
  97. 93.
    Scott, A. I., P. B. Reichardt, M. B. Slaytor and J. G. Sweeny. 1971. Mechanisms of indole alkaloid biosynthesis. Recognition of intermediacy and sequence by short-term incubation. Bioorg. Chem. 1:157–173.CrossRefGoogle Scholar
  98. 94.
    Guarnaccia, R., L. Botta and C. J. Coscia. 1973. Biosynthesis of acidic iridoid monoterpene gluco-sides in Vinca rosea. J. Am. Chem. Soc. 96:7079–7084.CrossRefGoogle Scholar
  99. 95.
    Madyastha, K. M., R. Guarnaccia, C. Baxter and C. J. Coscia. 1973. Monoterpene biosynthesis VII: S-Adenosyl-L-methionine: Loganic acid methyl transferase, a carboxyl-alkylating enzyme from Vinca rosea. J. Biol. Chem. 248:2497–2501.Google Scholar
  100. 96.
    Guarnaccia, R., K. M. Madyastha, E. Tegtmeyer and C. J. Coscia. 1972. Monoterpene biosynthesis VI: geniposidic acid, an iridoid glucoside from Genipa americana. Tetrahedron Lett. 5125–5127.Google Scholar
  101. 97.
    Inouye, H., S. Ueda and Y. Takeda. 1969. Loganin als Prekursor in der Biosynthese des Asperulosids. Z. Naturforsch. 24b: 1666–1667.Google Scholar
  102. 98.
    Battersby, A. R., A. R. Burnett and P. G. Parsons. 1970. Preparation and isolation of deoxyloganin: its role as precursor of loganin and the indole alkaloids. J. Chem. Soc., Chem. Commun. 826.Google Scholar
  103. 99.
    Scott, A. I., S. L. Lee and W. Wan. 1977. Indole alkaloid biosynthesis: partial purification of “ajmalicine synthetase” from Catharanthus roseus. Biochem. Biophys. Res. Commun. 75:1004–1009.PubMedCrossRefGoogle Scholar
  104. 100.
    Stockigt, J. and M. H. Zenk. 1977. Isovincoside (strictosidine), the key intermediate in the enzymatic formation of indole alkaloids. FEBS Lett. 79:233–237.CrossRefGoogle Scholar
  105. 101.
    Brown, R. T., J. Leonard and S. K. Sleigh. 1978. The role of strictosidine in monoterpenoid indole alkaloid biosynthesis. Phytochemistry 17:899–900.CrossRefGoogle Scholar
  106. 102.
    Rueffer, M., N. Nagakura and M. H. Zenk. 1978. Strictosidine, the common precursor for monoterpenoid indole alkaloids with 3a and 3ß configuration. Tetrahedron Lett. 1593–1596.Google Scholar
  107. 103.
    Stockigt, J., H. P. Husson, C. Kan-Fan and M. H. Zenk. 1977. Cathenamine, a central intermediate in the cell free biosynthesis of ajmalicine and related indole alkaloids. J. Chem. Soc, Chem. Commun. 164–166.Google Scholar
  108. 104.
    Treimer, J. F. and M. H. Zenk. 1978. Enzymic synthesis of corynanthe-type alkaloids in cell cultures of Catharanthus roseus: quantitation by radioimmunoassay. Phytochemistry17:227–231.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • K. M. Madyastha
    • 1
  • Carmine J. Coscia
    • 1
  1. 1.E. A. Doisy Department of BiochemistrySaint Louis University School of MedicineSt. LouisUSA

Personalised recommendations