Are the Steric Courses of Enzymatic Reactions Informative about Their Mechanisms?

  • Janos Retey
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 13)


Most of the biologically active substances: drugs, hormones, vitamins, flavors etc, occur as only one of several possible stereoisomers. Nature makes them in a completely stereospecific manner. In contrast, organic chemists have great difficulty in finding highly stereospecific reactions when synthesizing such compounds. It is not surprising therefore that stereospecificity is playing an increasingly important role both in the synthesis of natural products and in our understanding of reaction mechanisms. When chemists convert one product into another and cannot demonstrate the existence of stable intermediates in a direct way, we may talk of a black box process. We can of course still ask, what happens in the black box — what happens between the starting material and the product?


Chiral Recognition Deuterium Oxide Phenyl Pyruvate Methyl Succinate Stereochemical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanson, K. R. and I. A. Rose 1963. The absolute stereochemical course of citric acid biosynthesis. Proc. Natl. Acad. Sci. U.S.50:981–988.CrossRefGoogle Scholar
  2. 2.
    Weber, H. 1965. Untersuchungen zum sterischen Verlauf enzymatischer Reaktionen an Substraten mit Meso-Kohlen Stoffatom. Doctoral Thesis, Eidgenossische Technische Hochschule Zurich No. 3591.Google Scholar
  3. 3.
    Retey, J., K. Bartl, E. Ripp and W. E. Hull. 1977. Stereospecificity of phenyl pyruvate tautomerase. Eur. J. Biochem.72:251–257.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartl, K., C. Cavalar, T. Krebs, E. Ripp, J. Retey, W. E. Hull, H. Günther and H. Simon. 1977. Synthesis of stereospecifically deuterated phenylalanines and determination of their configuration. Eur. J. Biochem.72:247–250.PubMedCrossRefGoogle Scholar
  5. 5.
    Poston, J. M. 1978. Coenzyme-B12-dependent enzymes in potatoes: leucine 2,3-aminomutase and methyl-malonyl-CoA mutase. Phytochemistry17:401–402.CrossRefGoogle Scholar
  6. 6.
    Kellermeyer, R. W. and H. G. Wood. 1962. Methyl malonyl isomerase: a study of the mechanism of isomerization. Biochemistry1:1124–1131.PubMedCrossRefGoogle Scholar
  7. 7.
    Phares, E. F., M. V. Long and S. F. Carson. 1962. An intramolecular rearrangement in the methylma-lonyl isomerase reaction as demonstrated by positive and negative ion mass analysis of succinic acid. Biochem. Biophys. Res. Commun.8:142–146.PubMedCrossRefGoogle Scholar
  8. 8.
    Cardinale, G. J. and R. H. Abeles. 1967. Mechanistic similarities in the reactions catalyzed by dioldehydrase and methyl malonyl-CoA mutase. Biochim. Biophys. Acta132:517–518.PubMedGoogle Scholar
  9. 9.
    Frey, P. A. and R. H. Abeles. 1966. The role of the B12 coenzyme in the conversion of 1,2-propanediol to propionaldehyde. J. Biol. Chem.241:2732–2833.PubMedGoogle Scholar
  10. 10.
    Retey, J. and D. Arigoni. 1966. Coenzym-B12 als gemeinsamer Wasserstoffubertrager der Dioldehydrase- und der Methylmalonyl-CoA-Mutase Reaktion. Experientia22:783–784.PubMedCrossRefGoogle Scholar
  11. 11.
    Abeles, R. H. and D. Dolphin. 1976. The vitamin B12 coenzyme. Ac. Chem. Res.9:114–120.CrossRefGoogle Scholar
  12. 12.
    Barker, H. A. 1972. Corrinoid-dependent enzymic reactions. Annu. Rev. Biochem. 41:55–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Hogenkamp, H. P. C. 1968. Enzymatic reactions involving corrinoids. Annu. Rev. Biochem. 37:225–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Schrauzer, G. N. 1977. Neuere Entwicklungen auf dem Gebiet des Vitamins B12: Von einfachen Corrinen and von coenzym-B12-abhangigen Enzymreaktionen. Angew. Chem.77: 239–251;CrossRefGoogle Scholar
  15. 14a.
    Schrauzer, G. N. 1977. Neuere Entwicklungen auf dem Gebiet des Vitamins B12: Von einfachen Corrinen and von coenzym-B12-abhangigen Enzymreaktionen.Angew. Chem. Int. Ed.16:233–245.CrossRefGoogle Scholar
  16. 15.
    Stadtman, T. C. 1971. Vitamin B12. Science171:859.PubMedCrossRefGoogle Scholar
  17. 16.
    Retey, J., A. Umani-Ronchi, and D. Arigoni. 1966. Zur Stereochemie der Propandioldehydrase-Reaktion. Experientia 22:72–73.PubMedCrossRefGoogle Scholar
  18. 17.
    Zagalak, B., P. A. Frey, G. L. Karabatsos, and R. H. Abeles. 1966. The stereochemistry of the conversion of D and L 1,2-propane-diols to pro-pionaldehyde. J. Biol. Chem.241:3028–3055.PubMedGoogle Scholar
  19. 18.
    Bonetti, V. 1974. Etude Stereochimique des reactions catalysees par les deshydrases utilisant la coenzyme B12. Doctoral Thesis, Eidgenossische Technische Hochschule Zurich No. 5366. Google Scholar
  20. 19.
    Sprecher, M., R. L. Switzer and D. B. Sprinson. 1966. Stereochemistry of the glutamate mutase reaction. J. Biol. Chem.241:864–867.PubMedGoogle Scholar
  21. 20.
    Retey, J., F. Kunz, D. Arigoni, T. C. Stadtman. 1978. Zur Kenntnis der p-Lysin-Mutase-Reaktion: Mechanismus und sterischer Verlauf. Helv. Chim. Acta61:2989–2998.CrossRefGoogle Scholar
  22. 21.
    Sprecher, M., M. S. Clark, and D. B. Sprinson. 1966. The absolute configuration of methyl malonyl coenzyme A and stereochemistry of the methyl malonyl coenzyme A mutase reaction. J. Biol. Chem.241:872–877.PubMedGoogle Scholar
  23. 22.
    Retey, J., A. Umani Ronchi, J. Seibl, and D. Arigoni. 1966. Zum Mechanismus der Propanidoldehydrase-Reaktion. Experientia22:502–503.PubMedCrossRefGoogle Scholar
  24. 23.
    Babior, B. M., T. H. Moss, and D. C. Gould. 1972. The mechanism of action of ethanolamine ammonia lyase, a B12-dependent enzyme. J. Biol. Chem.247:4389–4392.PubMedGoogle Scholar
  25. 24.
    Babior, B. M., T. H. Moss, W. H. Orme-Johnson, and H. Beinert. 1974. The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. J. Biol. Chem.249:4537–4544.PubMedGoogle Scholar
  26. 25.
    Cockle, S. A., H. A. O. Hill, R. J. P. Williams, D. P. Davies, and M. A. Foster. 1972. The detection of intermediates during the conversion of propane-1,2-diol to propionaldehyde by glycerol dehydrase, a coenzyme-B12- dependent enzyme. J. Am. Chem. Soc.94:275–277.PubMedCrossRefGoogle Scholar
  27. 26.
    Finlay, T. H., J. Valinsky, A. S. Mildvan, and R. H. Abeles. 1973. Electron spin resonance studies with diol dehydrase. J. Biol. Chem.248:1285–1290.PubMedGoogle Scholar
  28. 27.
    Joblin, K. N., A. W. Johnson, M. F. Lappert, M. R. Hollaway, and H. A. White. 1975. Coenzyme-B12-dependent enzyme reactions: a spectrophotometry rapid kinetic study of ethanolamine ammonia lyase. FEBS Lett. 53:193–198.PubMedCrossRefGoogle Scholar
  29. 28.
    Retey, J., E. H. Smith, and B. Zagalak. 1978. Investigation of the mechanism of the methyl malonyl-CoA mutase reaction with the substrate analogue: Ethyl-malonyl-CoA. Eur. J. Biochem.83:437–451.PubMedCrossRefGoogle Scholar
  30. 29.
    Retey, J. and B. Zagalak. 1973. Stereochemie der coenzym-B12-abhangigen Methylmalonyl-CoA-Mutase-Reaktion. Untersuchungen mit Aethylmalonyl-CoA. Angew. Chem.85:721–722CrossRefGoogle Scholar
  31. 29a.
    Retey, J. and B. Zagalak. 1973. Stereochemie der coenzym-B12-abhangigen Methylmalonyl-CoA-Mutase-Reaktion. Untersuchungen mit Aethylmalonyl-CoA.Angew. Chem. Int. Ed.12:671–672.Google Scholar
  32. 30.
    Gunther, H., M. A. Alizade, M. Kellner, F. Biller and H. Simon. 1973. Preparation of (1R)[1–2H]- and (1S)[l-2H]-alcohols by exchange reactions catalyzed by yeast or a coupled enzyme system. Z. Naturforsch. 28c:241–246.Google Scholar
  33. 31.
    Gunther, H., F. Biller, M. Kellner and H. Simon. 1973. Praparative Darstellung von (1R)- und (1S)-Mono-deuteriopropanol durch enzymatische Austauschreaktionen. Angew. Chem. 85:141–142;CrossRefGoogle Scholar
  34. 31a.
    Gunther, H., F. Biller, M. Kellner and H. Simon. 1973. Praparative Darstellung von (1R)- und (1S)-Mono-deuteriopropanol durch enzymatische Austauschreaktionen.Angew. Chem. Int. Ed.12:146–147.CrossRefGoogle Scholar
  35. 32.
    Arigoni, D. and E. L. Eliel. 1969. Chirality due to the presence of hydrogen isotopes at non-cyclic positions. Top. Stereochem.4:192–199.Google Scholar
  36. 33.
    Akthar, M. and P. M. Jordan. 1969. The absolute configuration of stereospecifically tritiated glycines. Tetrahedron Lett. 875–877.Google Scholar
  37. 34.
    Besmer, P. and D. Arigoni. 1968. Stereochemische Untersuchungen mit chiral markiertem Glycin. Chimia 22:494.Google Scholar
  38. 35.
    Babior, B. M. 1969. The mechanism of action of ethanolamine deaminase. J. Biol. Chem. 244:449–456.PubMedGoogle Scholar
  39. 36.
    Kaplan, B. H. and E. R. Stadtman. 1968. Ethanolamine deaminase, a cobamide coenzyme-dependent enzyme. J. Biol. Chem.243:1794–1803.PubMedGoogle Scholar
  40. 37.
    Cornforth, J. W., J. W. Redmond, H. Eggerer, W. Buckel, and Ch. Gutschow. 1969. Asymmetric methyl groups and the mechanism of malate synthase. Nature 221:1212–1213.PubMedCrossRefGoogle Scholar
  41. 38.
    Luthy, J., J. Retey, and D. Arigoni. 1969. Preparation and detection of chiral methyl groups. Nature 221:1213–1215.PubMedCrossRefGoogle Scholar
  42. 39.
    Retey, J., C. J. Suckling, D. Arigoni, and B. M. Babior. 1974. The stereochemistry of the reaction catalyzed by ethanolamine ammonia-lyase, an adeno-sylcobalamin-dependent enzyme. J. Biol. Chem. 249:6359–6360.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Janos Retey
    • 1
  1. 1.Lehrstuhl für Biochemie im Institut fur Organische ChemieUniversitat KarlsruheKarlsruheGermany

Personalised recommendations