Advertisement

Post Harvest Physiology of Seeds as Related to Quality and Germinability

  • Daniel Côme
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)

Abstract

Seeds are remarkable organs in many ways and are of considerable economic interest. Their role is essential in the everyday life of men and animals, since they ensure plant reproduction. In this repect they are used to produce nutritive and floral plants, as well as fruit and forest trees. They are also used as direct sources of food or in various industries such as oil manufacturing and malting.

Keywords

Cold Treatment Hard Seed Seed Longevity Embryo Dormancy Seed Deterioration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Côme, Quelques problèmes de terminologie concernant les semences et leur germination, in: “La germination des semences,” R. Chaussât and Y. Le Deunff, ed., Gauthier-Villars, Paris (1975).Google Scholar
  2. 2.
    H. Thomas, Control mechanisms in the resting seed, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  3. 3.
    L. V. Barton, Dormancy in seeds imposed by the seed coat, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  4. 4.
    D. H. Hamly, Softening of the seeds of Melilotus alba, Bot. Gaz. 93:345 (1932).Google Scholar
  5. 5.
    A. Pitot, Le tégument des graines de Légumineuses, Bull. Soc. Bot. France 82:307 (1935).Google Scholar
  6. 6.
    L. Cavazza, Recherches sur l’impermeabilité des graines dures chez les Légumineuses, Ber. Schweiz, bot. Ges. 60:596 (1950).Google Scholar
  7. 7.
    E.O.C. Hyde. The function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the testa, Ann. Bot. 18:241 (1954).Google Scholar
  8. 8.
    P. Becquerel, Recherches sur la vie latente des graines, Ann. Sci. Nat., Bot. 9:193 (1907).Google Scholar
  9. 9.
    C.F. Korstian, Factors controlling germination and early survival in oaks, Yale Univ. School of Forestry Bull. n° 19 (1927).Google Scholar
  10. 10.
    W. Crocker, Life span in seeds, Bot Rev. 4:235 (1938).Google Scholar
  11. 11.
    L.V. Barton, The storage of citrus seeds, Contr. Boyce Thompson Inst. 13:47 (1943).Google Scholar
  12. 12.
    L.V. Barton, Seed storage and viability, Contr. Boyce Thompson Inst. 17:87 (1953).Google Scholar
  13. 13.
    L.V. Barton, “Seed Preservation and Longevity,” Leonard Hill, New York (1961).Google Scholar
  14. 14.
    G.D. Holmes, and G. Buszewicz, The storage of temperate forest tree species, Forestry Abstr. 19:nos 3 and 4 (1958).Google Scholar
  15. 15.
    A. Lang, Effects of some internal and external conditions on seed germination, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  16. 16.
    A. de Candolle, Sur la durée relative de la faculté de germer dans des graines appartenant à diverses familles, Ann. Sci. Nat., ser. 3, 6:373 (1846).Google Scholar
  17. 17.
    A. J. Ewart, On the longevity of seeds, Proc. Roy. Soc. Victoria 21:1 (1908).Google Scholar
  18. 18.
    J. F. Harrington, Seed storage and longevity, in: “Seed Biology,” T.T. Kozlowski, ed., Academic Press, New York and London, III (1972).Google Scholar
  19. 19.
    P. Becquerel, La longévité des graines macrobiotiques, C.R. Acad. Sci. Paris 199:1662 (1934).Google Scholar
  20. 20.
    I. Ohga, On the longevity of the fruit of Nelumbo nucifera, Bot. Mag., Tokyo 37:87 (1923)Google Scholar
  21. 21.
    I. Ohga, On the structure of some ancient, but still viable fruits of Indian Lotus, with special reference to their prolonged dormancy, Jap. J. Bot. 3:1 (1926).Google Scholar
  22. 22.
    S. Odum, Germination of ancient seeds. Floristical observations and experiments with archaeologically dated soil samples, Dansk. bot. Ark. 24:1 (1965).Google Scholar
  23. 23.
    A.E. Posild, C.R. Harrington, and G.A. Mulligan, Lupinus arcticus Wats, grown from seeds of the Pleistocene age, Science 158:113 (1967).Google Scholar
  24. 24.
    J. D. Maguire, Seed quality and germination, in: “The Physiology and Biochemistry of Seed Dormancy and Germination,” A.A. Khan, ed., Elsevier/North-Holland Biomedical Press, Amsterdam (1977).Google Scholar
  25. 25.
    A. A. Abdul-Baki, and J.D. Anderson, Physiological and Biochemical deterioration of seeds, In: “Seed Biology,” T.T. Kozlowski, ed., Academic Press, New York and London, II (1972).Google Scholar
  26. 26.
    ISTA (International Seed Testing Association), International rules of seed testing, Proc. Int. Seed Test. Ass. 31:1 (1966).Google Scholar
  27. 27.
    P. S. Wellington, Handbook for Seedling Evaluation, Proc. Int. Seed Test. Ass. 35:449 (1970).Google Scholar
  28. 28.
    D. Isely, The cold test for corn, Proc. Int. Seed Test. Ass. 16:299 (1950).Google Scholar
  29. 29.
    D. Isely, Vigor tests, Proc. Ass. Off. Seed Anal. 47:176 (1957).Google Scholar
  30. 30.
    G. Lakon, The topographical tetrazolium method for determining the germination capacity of seeds, Plant Physiol. 24:389 (1945).Google Scholar
  31. 31.
    R. P. Moore, Tetrazolium as a universally acceptable quality test of viable seed, Proc. Int. Seed Test. Ass. 27:795 (1962).Google Scholar
  32. 32.
    R. P. Moore, Tetrazolium staining for assessing seed quality in: “Seed Ecology,” W. Heydecker, ed., Butterworths, London (1973).Google Scholar
  33. 33.
    H. Bulat, Das topographische Tetrazoliumverfahren in der Saatgutprüfung, in: “Hundert Jahre Saatgutprüfung,” F. Ader, ed., Sauerländer, Frankfurt am Main (1970).Google Scholar
  34. 34.
    L. W. Woodstock, Biochemical tests for seed vigor, Proc. Int. Seed Test. Ass. 34:253 (1969).Google Scholar
  35. 35.
    K. Takayanagi, and K. Murakami, Rapid germinability test with exudate from seed, Nature 218:493 (1968).Google Scholar
  36. 36.
    S. Matthews, and W.T. Bradnock, Relationships between seed exudation and field emergence in peas and French beans, Hort. Res. 8:89 (1968).Google Scholar
  37. 37.
    W. T. Bradnock, and S. Matthews, Assessing field emergence potential of wrinkled-seeded peas, Hort. Res. 10:50 (1970).Google Scholar
  38. 38.
    M. Simak, Å. Gustafsson, and G. Granström, Die Röntgendiagnose in der Samenkontrolle, Proc. Int. Seed Test. Ass. 22:330 (1956).Google Scholar
  39. 39.
    R. Evrard, L’analyse de la qualité des semences par la méthode aux rayons, Ann. Gembl. 63:81 (1957).Google Scholar
  40. 40.
    L. V. Barton, Longevity in seeds and in the propagules of fungi, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  41. 41.
    E. H. Roberts, Cytological, Genetical, and Metabolic Changes Associated with Loss of Viability, _in: “Viability of Seeds,” E. H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  42. 42.
    T. A. Villiers, Ageing and the longevity of seeds in field conditions, in: “Seed Ecology,” W. Hedydecker, ed., Butterworths, London (1973).Google Scholar
  43. 43.
    D. J. Osborne, Senescence in Seeds, in: “Senescence in Plants,” K.V. Thimann, ed., CRC Press, Boca Raton, Florida (1980).Google Scholar
  44. 44.
    T.A. Villiers, Ultrastructural Changes in Seed Dormancy and Senescence, in: “Senescence in Plants,” K.V. Thimann, ed., CRC Press, Boca Raton, Florida (1980).Google Scholar
  45. 45.
    E.H. Roberts, F.H. Abdalla, and R.J. Owen, Nuclear damage and the ageing of seeds with a model for seed survival curves, Symp. Soc. exp. Biol. 21:65 (1967).PubMedGoogle Scholar
  46. 46.
    F. H. Abdalla, and E.H. Roberts, Effects of temperature, moisture, and oxygen on the induction of chromosome damage in seeds of barley, broad beans, and peas during storage, Ann. Bot. 32:119 (1968).Google Scholar
  47. 47.
    F. H. Abdalla, and E.H. Roberts, The effect of temperature and moisture on the induction of genetic changes in seeds of barley, broad beans, and peas during storage, Ann. Bot. 33:153 (1969).Google Scholar
  48. 48.
    K. S. E. Cheah, and D.J. Osborne, DNA lesions occur with loss of viability in embryos of ageing rye seed, Nature 272:593 (1978).PubMedGoogle Scholar
  49. 49.
    D. J. Osborne, R. Sharon, and R. Ben-Ishai, Studies on DNA integrity and DNA repair in germinating embryos of rye (Secale cereale), Israel J. Bot. 29:259 (1980/81).Google Scholar
  50. 50.
    S. S. Abu-Shakra, and T.M. Ching, Mitochondrial activity in germinating new and old soybean seeds, Crop Sci 7:115 (1967).Google Scholar
  51. 51.
    P. Berjak, and T.A. Villiers, Ageing in plant embryo. I. The establishment of the sequence of development and senescence in the root cap during germination, New Phytol. 69:929 (1970).Google Scholar
  52. 52.
    P. Berjak, and T.A. Villiers, Ageing in plant embryos. II. Age-induced damage and its repair during early germination, New Phytol. 71:135 (1972).Google Scholar
  53. 53.
    N. D. Hallam, Fine structure or viable and non-viable rye and other embryos, in: “Seed Ecology,” W. Heydecder, ed., Butterworths, London (1973).Google Scholar
  54. 54.
    T. M. Ching, and N. D. Hallam, Physiological and chemical differences in aged seeds, Crop Sci. 8:407 (1968).Google Scholar
  55. 55.
    A. A. Abdul-Baki, and J. D. Anderson, Viability and leaching of sugars from germinating barley, Crop Sci. 10:31 (1970)Google Scholar
  56. 56.
    W. Heydecker, The “vigour” of seeds — a review, Proc. Int. Seed Test. Ass. 34:201 (1969).Google Scholar
  57. 57.
    W. Heydecker, Vigour, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  58. 58.
    R. B. Austin, Effects of Environment Before Harvesting on Viability, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  59. 59.
    R. P. Moore, Effects of Mechanical injuries on viability, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  60. 60.
    E.H. Roberts, Storage Environment and the Control of Viability, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  61. 61.
    A. Lynen, P. Schribaux, and J.M. Gatheron, Influence des caractéristiques d’enceintes differentes propres au stockage d’une masse de grains sur les équilibres entre calories émises et calories dispersées, C.R. Acad. Sci. Paris 237: 1028 (1953).Google Scholar
  62. 62.
    H. A. Jones, A physiological study of maple seeds, Bot. Gaz. 69:127 (1920).Google Scholar
  63. 63.
    J.F.L. Childs, and G. Henciar, A method of maintaining viability of citrus seed in storage, Proc. Florida State Hort. Soc. 61:64 (1949).Google Scholar
  64. 64.
    G. M. Buszewicz, The longevity of beechnuts in relation to storage conditions, Rep. For. Res., For. Comm., London 1961:117 (1962).Google Scholar
  65. 65.
    B. Suszka, Storage of beech (Fagus silvatica L.)seed for up to 5 winters, Arboretum Kornickie 19:105 (1974).Google Scholar
  66. 66.
    B. Suszka, Cold storage of already after-ripened beech (Fagus silvatica L.) seeds, Arboretum Kornickie 20:299 (1975).Google Scholar
  67. 67.
    M. Bonnet-Masimbert, and C. Muller, La conservation des faines est possible, Rev. Forest. Francaise 27:129 (1975).Google Scholar
  68. 68.
    C. M. Christensen, Microflora and Seed Deterioration, in: “Viability of Seeds,” E.H. Roberts, ed., Chapman and Hall, London (1972).Google Scholar
  69. 69.
    G. Semeniuk, Microflora, in: “Storage of Cereal Grains and their Products,” J.A. Anderson and A.W. Alcock, ed., Amer. Soc. of Cereal Chemists, St Paul, 152 (1954).Google Scholar
  70. 70.
    R. Ulrich, “La conservation par le froid des denrées d’origine végétale,” Baillère, Paris (1954).Google Scholar
  71. 71.
    D. Côme, and T. Tissaoui, Nouveautés dans l’amélioration de la germination des graines par le froid, Rev. Gén. du Froid 3:287 (1973)Google Scholar
  72. 72.
    E. James, Preservation of seed stocks, Adv. Agron. 19:87 (1967).Google Scholar
  73. 73.
    J. F. Harrington, Problems of seed storage, in: “Seed Ecology,” W. Heydecker, ed., Butterworths, London (1973).Google Scholar
  74. 74.
    E. H. Roberts, The viability of rice seed in relation to temperature, moisture content, and gaseous environment, Ann. Bot. 25:381 (1961).Google Scholar
  75. 75.
    J. Touzard, Influences de diverses conditions constantes de température et d’humidité sur la longévité des graines de quelques espèces cultivees, Proc. 15th Intern. Hort. Cong. (Nice) I:339 (1961).Google Scholar
  76. 76.
    E. H. Roberts, and Ellis R.H., Prediction of seed longevity at sub-zero temperatures and genetic resources conservation, Nature 268:431 (1977).Google Scholar
  77. 77.
    M. Yamamoto, The decreased germination of dry seeds soaked in water, Jap. J. Ecol. 5:74 (1955).Google Scholar
  78. 78.
    G. Weibull, The cold storage of vegetable seeds, further studies, Rep. 14th Intern. Hort. Cong.: 647 (1955).Google Scholar
  79. 79.
    L. V. Barton, Effects of temperature and moisture on viability of stored lettuce, onion, and tomato seeds, Contr. Boyce Thompson Inst. 23:285 (1966).Google Scholar
  80. 80.
    D. Côme, “Les obstacles à la germination,” Masson, Paris (1970).Google Scholar
  81. 81.
    D. Côme, Rôle de l’eau, de l’oxygène et de la température dans la germination, in: “La germination des semences.” R. Chaussat and Y. Le Deunff, ed., Gauthier-Villars, Paris (1975).Google Scholar
  82. 82.
    D. Corne, and T. Tissaoui, Interrelated effects of imbibition, temperature and oxygen on seed germination, in: “Seed Ecology,” W. Heydecker, ed., Butterworths, London (1973).Google Scholar
  83. 83.
    M. Evenari, Light and seed dormancy, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  84. 84.
    W. Vidaver, Light and seed germination, in: “The Physiology and Biochemistry of Seed Dormancy and Germination,” A. A. Khan, ed., Elsevier/North-Holland Biochemical Press, Amsterdam (1977).Google Scholar
  85. 85.
    D. Come, Acquisition de l’aptitude à germer, in: “La germination des semences,” R. Chaussât and Y. Le Deunff, ed., Gauthier-Villars, Paris (1975).Google Scholar
  86. 86.
    D. Côrne, Problems of embryonal dormancy as exemplified by apple embryo, Israel J. Bot. 29:145 (1980/81).Google Scholar
  87. 87.
    S. Lewak, and R.M. Rudnicki, After-ripening in cold-requiring seeds, in: “The Physiology and Biochemistry of Seed Dormancy and Germination,” A.A. Kahn, ed., Elsevier/North-Holland Biomedical Press, Amsterdam, 1977.Google Scholar
  88. 88.
    C. Thévenot, Corrélations entre les cotylédons et l’axe de l’embryon de Pommier. Interprétation de la dormance, These Doct. Sci. Nat. Paris (1980).Google Scholar
  89. 89.
    F. Loria, L’influenza delle condizioni ambientali, durante l’embriogenesi, sulle caratteristiche del sem e della pianta che ne deriva, in: “Lavori di botanica, volume pubbl. in occasione del 70e genetliaco del Prof. G. Gola (Padova 1947),” Rosenberg and Sellier, Torino (1947).Google Scholar
  90. 90.
    L. V. Barton, and W. Crocker, “Twenty years of Seed Research at Boyce Thompson Institute for Plant Research,” Faber and Faber, London (1948).Google Scholar
  91. 91.
    L. V. Barton, Seed dormancy: General survey of dormancy types in seeds, and dormancy imposed by external agents, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  92. 92.
    W. Crocker, and L.V. Barton, “Physiology of seeds. An introduction to the experimental study of seed and germination problems,” Chronica Botanica, Waltham, Mass., U.S.A.(1953).Google Scholar
  93. 93.
    M. Evenari, Seed germination, in: “Radiation biology,” A. Hollaender, ed., McGraw Hill, New York, vol. 3 (1956).Google Scholar
  94. 94.
    P. Stokes, Temperature and seed dormancy, in: “Encyclopedia of Plant Physiology,” W. Ruhland, ed., Springer-Verlag, Berlin, Heidelberg, New York, 15/2 (1965).Google Scholar
  95. 95.
    F. Corbineau, A. Sanchez, D. Come, and R. Chaussat, La dormance du caryopse de Blé (Triticum aestivum L., var. Champlein) en relation avec la température et l’oxygène, CR. Acad. Agric. France, in the press (1981).Google Scholar
  96. 96.
    F. Corbineau, and D. Come, Quelques caractéristiques de la dormance du caryopse d’Orge (Hordeum vulgare L., variété Sonja), C.R. Acad. Sci. Paris D-29Q:547 (1980).Google Scholar
  97. 97.
    G. T. Harrington, Forcing the germination of freshly harvested wheat and other cereals, J. Agric. Res. 23:79 (1923).Google Scholar
  98. 98.
    I. Gadd, On methods for the elimination of seed dormancy in seed control work, Proc. Int. Seed. Test. Ass. 11:108 (1939).Google Scholar
  99. 99.
    T. A. Villiers, Seed dormancy, In: “Seed Biology,” T.T. Kozlowski, ed., Academic Press, New York and London, II (1972).Google Scholar
  100. 100.
    D. Come, L’inhibition de germination des graines de Pommier (Pirus malus L.) non dormantes, Rôle possible des phénols tégumentaires, Ann. Sci. Nat., Bot. VIII:371 (1967).Google Scholar
  101. 101.
    C. Thévenot, and D. Côme, Manifestations de la dormance embryonnaire du Pommier (Pirus malus L.) en fonction des conditions thermiques de germination, Physiol. Vég. 11:151 (1973).Google Scholar
  102. 102.
    T. Tissaoui, and D. Corne, Levée de dormance de l’embryon de Pommier (Pirus malus L.) en l’absence d’oxygène et de froid, Planta 111:315 (1973).Google Scholar
  103. 103.
    C. Thévenot, and D. Côme, Levée de dormance des embryons de Pommier (Pirus malus L.) par traitement des graines à des temperatures elevees, C.R. Acad. Sci. Paris D-287:1127 (1978).Google Scholar
  104. 104.
    M. Mes, Gibberellic acid and chilling requirements of peach seeds, Nature 184:2034 (1959).Google Scholar
  105. 105.
    C. Bulard, and J. Monin, Action de l’acide gibbérellique sur des embryons dormants d’Evonymus europaeus cultivés in vitro, C.R. Acad. Sci. Paris D-250:2922 (1960).Google Scholar
  106. 106.
    B. Frankland, and P.F. Wareing, Hormonal regulation of seed dormancy in Hazel (Corylus avellana L.) and Beech (Fagus sylvatica L.), J. Exp. Bot. 17:596 (1966).Google Scholar
  107. 107.
    J. W. Bradbeer, and N.J. Pinfield, Studies in seed dormancy. III. The effects of gibberellin on dormant seeds of Corylus avellana L., New-Phytol. 66:515 (1967).Google Scholar
  108. 108.
    M. Durand, Influence de quelques régulateurs de croissance sur la germination et la dormance de l’embryon de Pommier (Pirus malus L.), Thèse 3ème cycle, Paris (1974).Google Scholar
  109. 109.
    D. Côme, and A. Semadeni, Dégazage des enveloppes séminales lors de leur imbibition. III. Application â l’étude da la dureté des graines d’Hedysarum coronarium L., Physiol. Vég. 11:171 (1973).Google Scholar
  110. 110.
    L. V. Barton, Special studies on seed coat impermeability, Contr. Boyce Thompson Inst. 14:355 (1947).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Daniel Côme
    • 1
  1. 1.Laboratoire de Physiologie des Organes Végétaux après Récolte, C.N.R.S.Université Pierre et Marie Curie (Paris 6)MeudonFrance

Personalised recommendations