Hormonal Regulation of Senescence, Ageing, Fading, and Ripening

  • Johan Bruinsma
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


Senescence is generally looked upon as an irreversible process of gradual degeneration and desintegration, eventually leading to the death of the organism. Such a form of senescence, which may proceed uncontrolled, occurs in most perennial plants, e.g. trees, that after many years of flowering and fruiting (polycarpy) gradually die off.


Abscisic Acid Hormonal Regulation Ethylene Evolution Leaf Section Vase Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni, N., Anderson, J. D., and Lieberman, M., 1979, Production and action of ethylene in senescing leaf discs, Plant Physiol., 64:805.PubMedCrossRefGoogle Scholar
  2. Aharoni, N., and Lieberman, M., 1979, Ethylene as a regulator of senescence in tobacco leaf discs, Plant Physiol., 64:801.PubMedCrossRefGoogle Scholar
  3. Amrhein, N., and Schneebeck, D., 1980, Prevention of auxin-induced epinasty by α-aminooxyacetic acid, Physiol. Plant., 49:62CrossRefGoogle Scholar
  4. Apelbaum, A., and Katchansky, M., 1977, Improving quality and prolonging vase life of bud cut flowers by pretreatment with thiabendazole, J. Amer. Soc. Hort. Sci., 102:623.Google Scholar
  5. Asen, S., and Lieberman, M., 1963, Ethylene oxide found to combat deterioration of carnations, Florists Rev., 132: 3398.Google Scholar
  6. Atkin, R. K., Barton, G. E., and Robinson, D. K., 1973, Effect of rootgrowing temperature on growth substances in xylem exudate of Zea mays, J. Exp. Bot., 24:475.CrossRefGoogle Scholar
  7. Awad, M., and Young, R. E., 1979, Postharvest variation in cellulase, polygalacturonase, and pectinmethylesterase in avocado fruits in relation to respiration and ethylene production, Plant Physiol., 64:306.PubMedCrossRefGoogle Scholar
  8. Bangerth, F., 1978, The effect of a substituted aminoacid on ethylene biosynthesis, respiration, ripening and preharvest drop of apple fruits, J. Amer. Soc. Hort. Sci., 103:401.Google Scholar
  9. Bangerth, F., 1980, Funktion der Abscisinsäure bei der Reife von Apfelfrüchten, Gartenbauwiss., 45: 224.Google Scholar
  10. Beutelmann, P., and Kende, H., 1977, Membrane lipids in senescing flower tissue of Ipomoea tricolor, Plant Physiol., 59:888.PubMedCrossRefGoogle Scholar
  11. Beyer, E. M., 1976, A potent inhibitor of ethylene action in plants, Plant Physiol., 58: 268.PubMedCrossRefGoogle Scholar
  12. Beyer, E. M., 1979, 14C-ethylene metabolism during leaf abscission in cotton, Plant Physiol., 64:971.PubMedCrossRefGoogle Scholar
  13. Biswas, A. K., and Choudhuri, M. A., 1980, Mechanism of monocarpic senescence in rice, Plant Physiol., 65:340.PubMedCrossRefGoogle Scholar
  14. Blomstrom, D. C., and Beyer, E. M., 1980, Plant metabolize ethylene to ethylene glycol, Nature, 283: 66.CrossRefGoogle Scholar
  15. Boller, T., Herner, R. C., and Kende, H., 1979, Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopro-pane-1-carboxylic acid, Planta, 145:293.CrossRefGoogle Scholar
  16. Bramlage, W. J., Greene, D. W., Autio, W. R., and McLaughlin, J. M., 1980, Effects of aminoethoxyvinylglycine on internal ethylene concentrations and storage of apples, J. Amer. Soc. Hort. Sci., 105:847.Google Scholar
  17. Bruinsma, J., Knegt, E., and Varga, A., 1974, The role of growth-regulating substances in fruit ripening, Colloques Internat. C.N.R.S., 238: 193.Google Scholar
  18. Buescher, R. W., and Tichelaar, E. C., 1975, Pectinesterase, polygalacturonase, Cx-cellulase activities and softening of the rin tomato mutant, Hortscience, 10:624.Google Scholar
  19. Bufler, G., Mor, Y., Reed, M. S., and Yang, S. F., 1980, Changes in 1-aminocyclopropane-l-carboxylic-acid content of cut carnation flowers in relation to their senescence, Planta, 150:439.CrossRefGoogle Scholar
  20. Burg, S. P., and Burg, E. A., 1962 a, Role of ethylene in fruit ripening, Plant Physiol., 37:179.PubMedCrossRefGoogle Scholar
  21. Burg, S. P., and Burg, E. A., 1962 b, Relationship between post-harvest changes in ethylene content and the respiration and ripening of fruits, Plant Physiol., 37:xviii.CrossRefGoogle Scholar
  22. Burg, S. P., and Burg, E. A., 1964, Evidence for a natural occurring inhibitor of fruit ripening, Plant Physiol., 39:x.CrossRefGoogle Scholar
  23. Burg, S. P., and Burg, E. A., 1965, Ethylene action and the ripening of fruits, Science, 148: 1190.PubMedCrossRefGoogle Scholar
  24. Burg, S. P., and Dijkman, M. J., 1967, Ethylene and auxin participation in pollen induced fading of Vanda orchid blossoms, Plant Physiol., 42:1648.PubMedCrossRefGoogle Scholar
  25. Collins, J. G., and Morgan, M., 1980, The influence of temperature on the abscisic acid stimulated water flow from excised maize roots, New Phytol., 84:19.CrossRefGoogle Scholar
  26. Dyer, T. A., and Osborne, D. J., 1971, Leaf nucleic acids. II. Metabolism during senescence and effect kinetin, J. Exp. Bot., 22:552.CrossRefGoogle Scholar
  27. Eaks, I. L., 1980, Respiratory rate, ethylene production, and ripening response of avocado fruit to ethylene or propylene following harvest at different maturities, J. Amer. Soc. Hort. Sci., 105:744.Google Scholar
  28. Frenkel, C., and Dyck, R., 1973, Auxin inhibition of ripening in Bartlett pears, Plant Physiol., 51:6.PubMedCrossRefGoogle Scholar
  29. Frenkel, C., and Garrison, S. A., 1976, Initiation of ripening process in the rin tomato mutant and in chilling stressed tomatoes as influenced by oxygen and ethylene interactions, Plant Physiol. 57:S-26.Google Scholar
  30. Gepstein, S., and Thimann, K. V., 1980, Changes in the abscisic acid content of oat leaves during senescence, Proc. Natl. Acad. Sci. USA 77:2050.PubMedCrossRefGoogle Scholar
  31. Goldschmidt, E. E., Aharoni, Y., Eilati, S. K., Riov, J. W., and Monselise, S. P., 1977, Differential counteraction of ethylene effects by gibberellic acid and N6-benzyladenine in senescing citrus peel, Plant Physiol., 59:193.PubMedCrossRefGoogle Scholar
  32. Grove, M. D., Spencer, G. F., Rohwedder, W. K. Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., and Cook, J. C., 1979, Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen, Nature, 281: 216.CrossRefGoogle Scholar
  33. Hale, C. R., and Coombe, B. G., 1974, Abscisic acid — an effect on the ripening of grapes, in: “Mechanisms of regulation of plant growth,” ed. Bieleski, Ferguson and Crepwell, Roy. Soc. New Zealand, Wellington, 831.Google Scholar
  34. Hall, M. A., 1977, Ethylene involvement in senescence processes, Ann. appl. Biol., 85:424.Google Scholar
  35. Hanson, A. D., and Kende, H., 1975, Ethylene-enhanced ion and sucrose efflux in morning glory flower tissue, Plant Physiol., 55:663.PubMedCrossRefGoogle Scholar
  36. Hartung, W., and Abou-Mandour, A. A., 1980, Abscisic acid in root cultures of Phaseolus coccineus L., Z. Pflanzenphysiol., 97 265.Google Scholar
  37. Heilmann, B., Hartung, W., and Gimmler, H., 1980, The distribution of abscisic acid between chloroplasts and cytoplasm of leaf cells and the permeability of the chloroplast envelope for abscisic acid, Z. Pflanzenphysiol., 97:67.Google Scholar
  38. Heins, R. D., and Blakely, N., 1980, Influence of ethanol on ethylene biosynthesis and flower senescence of cut carnation, Scientia Hortic, 13:361.CrossRefGoogle Scholar
  39. Hewitt, S., Hillman, J. R., and Knights, B. A., 1980, Steroidal oestrogens and plant growth and development, New Phytol., 85: 329.CrossRefGoogle Scholar
  40. Hillman, J. R., 1978, “Isolation of plant growth substances,” Cambridge University Press, Cambridge, U.K.Google Scholar
  41. Hobson, G. E., 1979, What factors are involved in the onset of ripening in climacteric fruit?, Current Adv. Plant Sci., 37: 1.Google Scholar
  42. Hoffman, N. E., and Yang, S. F., 1980, Changes of 1-aminocyclopro-pane-1-carboxylic acid content in ripening fruits in relation to their ethylene production rates, J. Amer. Soc. Hort. Sci. 105:492.Google Scholar
  43. Hulme, A. C., Rhodes, M. J. C., Wolltorton, L. S. C., and Galliard, T., 1969, Biochemical changes associated with ripening in apples, Qual. Plant. Mat. Veget., 19:1.CrossRefGoogle Scholar
  44. Inaba, A., Ishida, M., and Sobajima, Y., 1976, Changes in endogenous hormone concentrations during berry development in relation to the ripening of Delaware grapes, J. Japan, Soc. Hort.Sci., 45:245.CrossRefGoogle Scholar
  45. Kaur-Swahney, R., and Galston, A. W., 1979, Interaction of poly-amines and light on biochemical processes involved in leaf senescence, Plant, Cell & Environment, 2:189.CrossRefGoogle Scholar
  46. Kende, H., and Baumgartner, B., 1974, Regulation of aging in flowers of Ipomoea tricolor by ethylene, Planta, 116:279.CrossRefGoogle Scholar
  47. King, R. W., 1979, Abscisic acid synthesis and metabolism in wheat ears, Aust. J. Plant Physiol., 6:99.CrossRefGoogle Scholar
  48. Konze, J. R., Jones, J. F., Boller, T., and Kende, H., 1980, Effect of 1-aminocyclopropane-l-carboxylic acid on the production of ethylene in senescing flowers of Ipomoea tricolor Cav., Plant Physiol., 66:566.PubMedCrossRefGoogle Scholar
  49. Leopold, A. C., 1975, Aging, senescence, and turnover in plants, BioScience, 25:659.CrossRefGoogle Scholar
  50. Lieberman, M., Baker, J. E., and Sloger, M., 1977, Influence of plant hormones on ethylene production in apple, tomato, and avocado slices during maturation and senescence, Plant Physiol., 60:214.PubMedCrossRefGoogle Scholar
  51. Lieberman, M., 1979, Biosynthesis and action of ethylene, Ann. Rev. Plant Physiol., 30:533.CrossRefGoogle Scholar
  52. Mayak, S., and Halevy, A. H., 1970, Cytokinin activity in rose petals and its relation to senescence, Plant Physiol., 46: 497.PubMedCrossRefGoogle Scholar
  53. Mayak, S., and Halevy, A. H., 1972, Interrelationship of ethylene and abscisic acid in the control of rose petal senescence, Plant Physiol., 50:341.PubMedCrossRefGoogle Scholar
  54. Mayak, S., Halevy, A. H., and Katz, M., 1972, Correlative changes in phytohormones in relation to senescence processes in rose petals, Physiol. Plant., 27:1.Google Scholar
  55. Miernyk, J. A., 1979, Abscisic acid inhibition of kinetin nucleotide formation in germinating lettuce seeds, Physiol. Plant., 45:63.CrossRefGoogle Scholar
  56. Milborrow, B. V., 1979, Antitranspirants and the regulation of abscisic acid content, Aust. J. Plant Physiol., 6:249–254CrossRefGoogle Scholar
  57. Mizrahi, Y., Dostal, H. C., and Cherry, J. H., 1975, Ethylene-induced ripening in attached rin fruits, a non-ripening mutant of tomato, Hortscience 10:414.Google Scholar
  58. Nichols, R., 1977, Sites of ethylene production in the pollinated and unpollinated senescing carnation (Dianthus caryophyllus) inflorescence, Planta, 135:155.CrossRefGoogle Scholar
  59. Noodén, L. D., and Leopold, A. C., 1978, Phytohormones and the regulation of senescence and abscission, in: “Phytohormones and regulated compounds.” II, ed. Letham, Goodwin and Higgins, Elservier, Amsterdam.Google Scholar
  60. Noodén, L. D., Kahanak, G. M., and Okatan, Y., 1979, Prevention of monocarpic senescence in soybeans with auxin and cytokinin: and antidote for self-destruction, Science, 206:841.PubMedCrossRefGoogle Scholar
  61. Oostrom, H., Kulescha, Z., Vliet, Th. B. van, and Libbenga, K. R., 1980, Characterization of a cytoplasmic auxin receptor from tobacco-pith callus, Planta, 149:44.CrossRefGoogle Scholar
  62. Pratt, H. K., and Goeschl, J. D., 1968, The role of ethylene in fruit ripening, in: “Biochemistry and physiology of plant growth substances,” ed. Wightman and Letterfield, Runge Press, Ottawa, 1295.Google Scholar
  63. Radin, J. W., 1981, Water relations of cotton plants under nitrogen deficiency. IV. Leaf senescence during drought and its relation to stomotal closure, Physiol. Plant., 51:145.CrossRefGoogle Scholar
  64. Ramanuja Rao, I. V., 1979, Postharvest physiology of the spike and regulation of flower development in Gladeolus, Thesis, Delhi.Google Scholar
  65. Sagee, O., Goren, R., and Riov, J., 1980, Abscission of Citrus leaf expiants. Interrelationships of abscisic acid, ethylene, and hydrolytic enzymes, Plant Physiol., 66:750.PubMedCrossRefGoogle Scholar
  66. Saltveit, M. E., and McFeeters, R. F., 1980, Polygalacturonase activity and ethylene synthesis during cucumber fruit development and maturation, Plant Physiol., 66: 1019.PubMedCrossRefGoogle Scholar
  67. Sawamura, M., Knegt, E., and Bruinsma, J., 1978, Levels of endogenous ethylene, carbon dioxide, and soluble pectin, and activities of pectin methylesterase and polygalacturonase in ripening tomato fruits, Plant Cell Physiol., 19:1061.Google Scholar
  68. Suttle, J. C., and Kende, H., 1978, Ethylene and senescence in petals of Tradescantia, Plant Physiol., 62:267.PubMedCrossRefGoogle Scholar
  69. Tamas, I. A., Ozbun, J. L., Wallace, D. H., Powell, L. E., and Engels, C. J., 1979 a, Effects of fruits on dormancy and abscisic acid concentration in the axillary buds of Phaseolus vulgaris L., Plant Physiol., 64:615.PubMedCrossRefGoogle Scholar
  70. Tamas, I. A., Wallace, D. H., Sudford, P. M. and Ozbun, J. L., 1979 b, Effect of older fruits on abortion and abscisic acid concentration of younger fruits in Phaseolus vulgaris L., Plant Physiol., 64:620.PubMedCrossRefGoogle Scholar
  71. Thimann, K. V., and Satler, S., 1979, Relation between senescence and stomatal opening: senescence in darkness, Proc. Nat. Acad. Sci. USA, 76:2770.PubMedCrossRefGoogle Scholar
  72. Thomas, H., and Stoddardt, J. L., 1980, Leaf senescence, Ann. Rev. Plant Physiol., 31:83.CrossRefGoogle Scholar
  73. Tigchelaar, E. C., and McGlasson, W. B., 1977, Tomato ripening mutants: a key role for polygalacturonase in fruit ripening?, Plant Physiol., 59:S-121.Google Scholar
  74. Tingwa, P. O., and Young, R. E., 1975, The effect of indole-3-acetic acid and other growth regulators on the ripening of avocado fruits, Plant Physiol., 55:937.PubMedCrossRefGoogle Scholar
  75. Ueda, J., and Kato, J., 1980, Isolation and identification of a senescence-promoting substance from wormwood (Artemisia ab-sinthum L.), Plant Physiol., 66:246.PubMedCrossRefGoogle Scholar
  76. Varga, A., and Bruinsma, J., 1974, The growth and ripening of tomato fruits at different levels of endogenous cytokinins, J. Hort. Sci., 49:135.Google Scholar
  77. Veen, H., and Geijn, S. C. van de, 1978, Mobility and ionic form of silver as related to longevity of cut carnations, Planta 140:93.CrossRefGoogle Scholar
  78. Veen, H., Henstra, S., and Bruyn, W. C. de, 1980, Ultrastructural localization of silver deposits in the receptacle cells of carnation flowers, Planta, 148:245.CrossRefGoogle Scholar
  79. Wagner, H., and Michael, G., 1969, Cytokininbildung in Wurzeln von Sonnenblumen bei unterschiedlicher Stickstoffernährung und Chloramphenicol-Zusatz, Naturwiss., 56:379.PubMedCrossRefGoogle Scholar
  80. Williams, M., 1980, AVG cuts apple production time, boots harvest, Hortscience, 15:76.Google Scholar
  81. Wittenbach, V. A., 1977, Induced senescence of intact wheat seedlings and its reversibility, Plant Physiol., 59:1039.PubMedCrossRefGoogle Scholar
  82. Wright, S. T. C., 1980, The effect of plant growth regulator treatments on the levels of ethylene emanating from excised turgid and wilted wheat leaves, Planta, 148:381.CrossRefGoogle Scholar
  83. Yu, Y. -B., Adams, D. O., and Yang, S. F., 1979, Regulation of auxin-induced ethylene production in mung bean hypocotyls, Plant Physiol., 63:589.PubMedCrossRefGoogle Scholar
  84. Yu, Y. -B., and Yang, S. F., 1979, Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion, Plant Physiol., 64:1074.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Johan Bruinsma
    • 1
  1. 1.Agricultural UniversityWageningenThe Netherlands

Personalised recommendations