Plant Membrane Lipids : Changes and Alterations during Aging and Senescence

  • Paul Mazliak
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


Some types of lipid molecules (phospholipids or galactolipids), because of their amphiphilic properties, are essential constituents of all biomembranes. Changes occurring in the lipid composition of these membranes will certainly modify their permeability, their energy transduction capacity, the activities of their membranebound enzymes, before and after harvest, when plants of economical value are concerned. Furthermore, after harvest, many alterations are likely to affect membrane lipids, thus playing a major role in the senescence or the post-harvest physiology of plant crops. It seems therefore reasonable to pay some attention to plant membrane lipids when discussing the factors allowing good crop preservation.


Membrane Lipid Potato Tuber Senescent Leaf Jerusalem Artichoke Chloroplast Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mazliak, Glyco- and phospholipids of biomembranes in higher plants, pp. 48–74 in “Lipids and lipid polymers in higher plants,” M. Teveni and H.K. Lichtenthaler, ed., Springer-Verlag, Heidelberg (1977).CrossRefGoogle Scholar
  2. 2.
    J.K. Raison, Membrane lipids : structure and function, pp 57–83 in “The Biochemistry of Plants, vol 4 : Lipids : Structure and Functions,” P.K. Stumpf, ed., Academic Press, New York, (1980).Google Scholar
  3. 3.
    C. Demandre, “Les membranes cytoplasmiques du tubercule de Pomme de terre (Solanum tuberosum, L.),” Ph. D. thesis, University of Paris (1976).Google Scholar
  4. 4.
    D. Meunier, P. Mazliak, Differences de composition lipidique entre les deux membranes des mitochondries de Pomme de terre, C. R. Acad. Sc, 275:213 (1972).Google Scholar
  5. 5.
    R. Douce, R.B. Holz, A.A. Benson, Isolation and properties of the envelope of spinach chloroplasts. J.Biol.Chem., 248:7215 (1973).PubMedGoogle Scholar
  6. 6.
    A. Ben Abdelkader, “Biogenese des lipides membranaires pendant la “survie” de tranches de tubercules de Pomme de terre.” Doctorate thesis, Paris, (1972).Google Scholar
  7. 7.
    A.M. Justin, D. Robert, P. Mazliak, Préparation de membranes nucléaires d’hypocotyles de Tournesol (Helianthus annuus, L.). Analyse des lipides, C.R. Acad. Sc., 288:81 (1979).Google Scholar
  8. 8.
    R.P. Donaldson, N.E. Tolbert, C. Schnarrenberger, A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissue, Arch. Biochem. Biophys., 152:199 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    F. Tchang, “Biosynthèse des lipides contenus dans les peroxysomes du tubercule de Pomme de terre (Solanum tuberosum, L.).” Ph. D. Thesis, University of Paris, (1977).Google Scholar
  10. 10.
    L.R.O. Mackender, R.M. Leech, The galactolipid, phospholipid and fatty acid composition of the chloroplast envelope membranes of Vicia faba. Plant Physiol., 39:262 (1974).Google Scholar
  11. 11.
    A. Ben Abdelkader, P. Mazliak, Echanges de lipides entre mito- chondries, microsomes et surnageant cytoplasmique de cellules de Pomme de terre ou de Chou-fleur, Eur. J. Biochem. , 15:250, (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    A.M. Justin, “Les lipides des noyaux et membranes nucléaires d’hypocotyles de Tournesol (Helianthus annuus, L.).” Doctorate Thesis, University of Paris (1979).Google Scholar
  13. 13.
    P.K. Stumpf, ed., “The Biochemistry of plants, vol 4 : Lipids, Structure and Function Academic Press, New-York (1980).Google Scholar
  14. 14.
    P. Mazliak, P. Benveniste, C. Costes, R. Douce, “Biogenesis and Function of Plant Lipids.” Elsevier-North-Holland, Amsterdam (1980).Google Scholar
  15. 15.
    P.K. Stumpf, Biosynthesis of saturated and unsaturated fatty acids, p. 177–204 rn “The Biochemistry of Plants, vol 4.” P.K. Stumpf, ed., Academic Press, New-York (1980).Google Scholar
  16. 16.
    P. Mazliak, J.C. Kader, Phospholipid exchange systems, p. 283–300, in “The Biochemistry of Plants, vol 4.” P.K. Stumpf, ed., Academic Press, New-York (1980).Google Scholar
  17. 17.
    D.J. Morré, J. Kartenberg, W.W. Franke, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta, 559: 71 (1979).PubMedGoogle Scholar
  18. 18.
    P. Mazliak, A. Ben Abdelkader, A. Trémolières, Le renouvellement des lipides dans les membranes animales et végétales, Cah. Nut. Diet., 7:51 (1972).Google Scholar
  19. 19.
    A. Ben Abdelkader, P. Mazliak, Renouvellement des lipides dans diverses fractions cellulaires de parenchyme de Pomme de terre ou d’inflorescence de Chou-fleur, Physiol. Vég., 9:227 (1971).Google Scholar
  20. 20.
    M.J. Montague, P.M. Ray, Phospholipid-synthesizing enzymes associated with golgi dictyosomes from pea tissue. Plant Physiol., 59:225 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    R.F. Wilson, R.W. Rinne, Studies on lipid synthesis and degradation in developing soybean cotyledons. Plant Physiol., 57: 375 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    T.S. Moore, Phospholipid turnover in soybean tissue cultures, Plant Physiol., 60:754 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    A.C. Cumming, D.J. Osborne, Membrane turn-over in imbibed dormant embryos of the wild oat (Avena fatua, L.) II Phospholipid turn-over and membrane replacement, Planta, 139:219 (1978).CrossRefGoogle Scholar
  24. 24.
    P. Mazliak, Le métabolisme des lipides au cours de la maturation des Pommes, Qualitas Plant., 19:19 (1969).CrossRefGoogle Scholar
  25. 25.
    A. Cherif, A. Ben Abdelkader, Analyse quantitative des acides gras présents dans différentes régions du tubercule de Pomme de terre ; variation au cours de la conservation à 10°C, Potato Res., 13:284 (1970).CrossRefGoogle Scholar
  26. 26.
    R.S. Pearce, I.M.A. Samad, Changes in fatty acid content of polar lipids during ageing of seeds of peanut (Arachis hypogea, L.), J. Exp. Bot., 31:1283 (1980).CrossRefGoogle Scholar
  27. 27.
    E. Chapman, L.C. Wright, J.K. Raison, Seasonal changes in the structure and frunction of mitochondrial membranes of artichoke tubers, Plant Physiol., 63:363 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Siminovitch, J. Singh, I.A. de la Roche, Studies on membranes in plant cells resistant to extreme freezing. I. Augmentation of phospholipids and membrane substance without changes in unsaturation of fatty acids during hardening of black locust bark, Cryobiology, 12:144 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    J.L. Bailey, A.G. Whyborn, The osmiophilic globules of chloroplasts II. Globules of the spinach-beet chloroplast, Biochim. Biophys. Acta, 78:163 (1963).CrossRefGoogle Scholar
  30. 30.
    D.W. Newman, Chloroplast fatty acid transformations in nitrogen deficient and senescent tissues, Plant Physiol., 41:328 (1966).PubMedCrossRefGoogle Scholar
  31. 31.
    F. Fong, R.L. Heath, Age dependent changes in phospholipids and galactolipids in primary bean leaves (Phaseolus vulgaris), Phytochem., 16:215 (1977).CrossRefGoogle Scholar
  32. 32.
    S.R. Draper, Lipid changes in senescing cucumber cotyledons, Phytochem., 8:1641 (1969).CrossRefGoogle Scholar
  33. 33.
    E.C. Grob, L. Csupor, Zur Kenntnis der Blattlipide von Acerplatanoides L. während der herbstlichen Vergilbung, Experientia, 23:1004 (1967).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Mazliak, A.M. Catesson, Métabolisme des lipides dans le parenchyme externe de l’épiderme des Pommes. Fruits, 23:247 (1968).Google Scholar
  35. 35.
    M. Place, M.S. Morgan, A. Rutkoski, D.W. Newman, J.G. Jaworski, Fatty-acid metabolism in senescing and regreening soybean cotyledons, Planta, 147:247 (1979)CrossRefGoogle Scholar
  36. 36.
    D. Dalgarn, P. Miller, T. Bricker, N. Speer, J.G. Jaworski, D.W. Newmann, Galactosyl transferase activity of chloroplast envelopes from senescent soybean cotyledons, Plant Sc. Lett. , 14:1 (1979).CrossRefGoogle Scholar
  37. 37.
    B.D. McKersie, J.E. Thompson, Lipid crystallization in senescent membranes from cotyledons, Plant Physiol., 59:803 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    B.D. McKersie, J.E. Thompson, Patterns of cytoplasmic membrane senescence in cotyledon tissue, Phytochem., 14:1485 (1975).CrossRefGoogle Scholar
  39. 39.
    P. Beutelmann, H. Kende, Membrane lipids in senescing flower tissue of Ipomoea tricolor, Plant Physiol., 59:888 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    R.F. Irvine, D.J. Osborne, The effect of ethylene on (1–14C) glycerol incorporation into phospholipids of etiolated pea-stems , Biochem. J. , 136:1133 (1973).PubMedGoogle Scholar
  41. 41.
    M. Keeney, Secondary degradation products, p. 79–89 in “Lipids and their oxidation.” H.W. Schultz, E.A. Day, R.O. Sinnhuber ed., Avi publishing Cy, Westport, Connecticut (USA) (1962).Google Scholar
  42. 42.
    T. Galliard, Lipolytic and lipoxygenase enzymes in plants and their action in wounded tissues, p. 155–201 in “Biochemistry of wounded plant tissues”, G. Kahl ed., W. de Gruyter, Berlin (1978).Google Scholar
  43. 43.
    S.O. Satler, K.V. Thimann, The influence of aliphatic acohols on leaf senescence, Plant Physiol. , 66:395 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Pinsky, S. Grossmann, M. Trop, Lipoxygenase content and antioxidant activity of some fruits and vegetables, J. Food Sci., 36:571 (1971).CrossRefGoogle Scholar
  45. 45.
    Y.P. Maguire, N.F. Haard, Fluorescent product accumulation in ripening fruit, Nature, 528:599 (1975).CrossRefGoogle Scholar
  46. 46.
    H.W. Gardner, Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with non-enzymic, J. Agric. Food Chem., 23:129 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    J.L. Marx, Aging research : cellular theories of senescence, Science, 186:1105 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Paul Mazliak
    • 1
  1. 1.University of ParisParisFrance

Personalised recommendations