Stress Metabolites

  • Norman F. Haard
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


A phenomenon, comparable to induced immunity in animals, was reported for the late blight disease of potatoes over 40 years ago (73). The phytoalexin theory of plant immunity evolved from these early observations. According to this theory, a specific metabolic interaction between a plant host and a challenging microorganism may give rise to the formation of phytoalexins (from Greek: to ward off). The phytoalexins formed in potato acted to inhibit the growth of the virulent race 1 of Phytophthora infestans. Originally, the theory suggested that phytoalexins are absent in healthy plant tissues and that the phytoalexin response is highly specific with regard to pathogen and host cultivar. In the example of late blight disease, potato tubers carrying the gene R1 and an avirulent race 0 to P. infestans represented the specific metabolic interaction. Recent studies have demonstrated that phytoalexins may occur in trace quantities in apparently healthy plant tissues and that a variety of biological agents can trigger the accumulation of phytoalexins in a given plant tissue.


Potato Tuber Sweet Potato Phytophthora Infestans Fusarium Solani White Potato 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albersheim P. and Valente, B.S. (1978). Host pathogen interactions in plants: When exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biology, 78(3), 627.Google Scholar
  2. 2.
    Alves, L. M., Heisler, E. G., Kissinger, J. C., Patterson, J. M. and Kalan, E. B. (1979). Effects of controlled atmospheres on production of sesquiterpenoid stress metabolites by white potato tuber. Possible involvement of cyanide resistant respiration. Plant Physiol., 63 (2), 359.PubMedGoogle Scholar
  3. 3.
    Anderson, A. J. and Albersheim, P. (1975). Isolation of a pathogen-synthesized fraction rich in glucan that elicits a defense response in the pathogens host. Plant Physiol. 56(2), 286.Google Scholar
  4. 4.
    Baker, R., Hanchey, P. and Dottarar, S. D. (1978). Protection of carnation against Fusarium roseum stem rot by fungi. Phytopathology, 68 (10), 1495.Google Scholar
  5. 5.
    Bostoc, R.M., Kuc, J.A. and Laine, R.A. (1981). Eicosapenta-enoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science, 212, 67.Google Scholar
  6. 6.
    Boyd, M.R., Burka, L.T., Wilson, B.J., and Sasume, H.A. (1978) In vitro studies on the metabolic activation of the pulmonary toxin 4-ipomeanol by rat lung and liver microsomes. J. Pharmacol. Exp. Ther., 207, 677.PubMedGoogle Scholar
  7. 7.
    Buregger, B.B. and Keen, N.T. (1979). Specific elicitors of glyceollin accumulation in Pseudomonas glycinea soybean host parasite system. Physiol. Plant Pathol., 15(1), 43.Google Scholar
  8. 8.
    Burden, R.S., Bailey, J.A. and Dawson, G.W. (1972). Structure of the isoflavanoids from Phaseolus vulgaris infected with tobacco necrosis virus. Tetrahedron Lett., 41, 4175.Google Scholar
  9. 9.
    Burka, L.T. and Kuhnert, L. (1977). Biosynthesis of furano-terpenoid stress metabolites in sweet potatoes. Oxidation of ipomeamarone to 4-hydroxymyoporone. Phytochemistry, 16 (12), 2022.Google Scholar
  10. 10.
    Catalano, E.A., Hasline, V.C., Dupuy, H.P. and Constatin, R.J. (1976). Ipomeamarone in blemished and diseased sweet potatoes. J. Agric. Food Chem., 25, 94.PubMedGoogle Scholar
  11. 11.
    Cheema, A.S. and Haard, N.F. (1978). Induction of rishitin and lubimin in potato tuber slices by nonspecific elicitors and the influence of storage conditions. Physiol. Plant Pathol., 13, 233.Google Scholar
  12. 12.
    Cheema, A.S. and Haard, N.F. (1979). Induction of rishitin and lubimin synthesis in potato tuber slices by non-specific elicitors-role of gene derepression. Journal of Food Protection, 42 (6), 512.Google Scholar
  13. 13.
    Cheema, A.S. and Haard, N.F. (1980). Induction of rishitin and lubimin synthesis in potato tuber slices by non-specific elicitors-role of gene derepression. Journal Indian Potato Association, 7 (2), 48.Google Scholar
  14. 14.
    Cline, K., Wade, M. and Albersheim, P. (1978). Host-parasite interactions: Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants. Plant Physiol., 62(6), 918.PubMedGoogle Scholar
  15. 15.
    Coxon, D.T., Curtis, R.F. and Howard, B. (1975). Ipomeamarone, a toxic furanterpenoid in sweet potatoes (Ipomea batatas) in the United Kingdom. Fd. Cosmet. Toxicol., 13, 87.Google Scholar
  16. 16.
    Coxon, D.T., Oneill, T.M., Mansflied, J.W. and Porter, A.E. (1980). Identification of 3 hydroxyflavan phytoalexins from daffodil Narcissus pseudonaricissus bulbs. Phyto chem., 19 (5), 889.Google Scholar
  17. 17.
    Cruickshank, I.A.M. and Perrin, D.R. (1960). Isolation of the phytoalexin from Pisum sativum. Nature, 187, 799.PubMedGoogle Scholar
  18. 18.
    Daniels, D.L. and Hadwiger, L.A. (1976). Pisatin-inducing components in filtrates of virulent and avirulent Fusar ium solani cultures. Physiol. Plant Pathol., 8(1), 9.Google Scholar
  19. 19.
    Debnovetskii, G. and Basova, S.V. (1979). Phytoalexin activity of poplars as an index of their resistance to rust. Mikol. Fitopatol., 13 (5), 428.Google Scholar
  20. 20.
    Dewick, P.M. and Ingham, J.L. (1980). Isopterofuran a new 2 aryl benzofurna phytoalexin from Coronilla emerus Phytochem., 19 (2), 289.Google Scholar
  21. 21.
    Dewick, P.M. and Martin, M. (1979). Biosynthesis of pterocarpan isoflavan and coumestan metabolites of Medicago sativa. Chalcone isoflavone and isoflavanone precursors. Phytochemistry, 18 (4), 587.Google Scholar
  22. 22.
    Dewit, P.J. and Roseboom, P.H. (1980). Isolation and partial characterization and specificity of glycoprotein elicitors from culture filtrates, mycelium, cell walls of Cladosporium fulvum. Physiol. Plant. Pathol., 16 (3), 391.Google Scholar
  23. 23.
    Dixon, R.A. and Fuller, K.W. (1976). Effect of synthetic auxin levels on Phaseollin production and phenylalanine amminia-lyase activity in tissue cultures of Phaseolus vulgaris. Physiol. Plant Pathol., 9 (3), 299.Google Scholar
  24. 24.
    Doherty, J. and Beusher, R. (1978). Occurrence of the phyto-alexin phaseollin in pods of Phaseolus vulgaris. J. Sci. Food Agric, 29 (10), 853PubMedGoogle Scholar
  25. 25.
    Flores, G. and Hubbes, M. (1979). Phytoalexin production by aspen Populus tremuloides in response to infection by Hypoxylon mammatum and Alternaria spp. Eur. J. For. Pathol., 9 (5), 280.Google Scholar
  26. 26.
    Fuchs, A., Devries, F.W., Lantheer, C.A., and Vanveldhuizen, A. (1980). 3-hydroxymaackiain isoflavan a pisatin metabolite produced by Fusarium oxysporum. Phytochemistry, 19 (5), 917.Google Scholar
  27. 27.
    Geigert, J., Stermitz, F.R., Johnson, D., Maag, D. and Johnson, D. (1973). Two phytoalexins from sugarbeet Beta vulgaris leaves. Tetrahedron, 29, 2703.Google Scholar
  28. 28.
    Gnanamanickam, S.S. and Smith, D.A. (1980). Selective toxicity of isoflavanoid phytoalexins to gram positive bacteria. Phytopathology, 70 (9), 894.Google Scholar
  29. 29.
    Grisebach, H. and Ebel, J. (1978). Phytoalexins chemical defense substances of higher plants. Agnew. Chem. Int. Engl., 17 (9), 635.Google Scholar
  30. 30.
    Grzelinska, A. (1976). Fitoalesksyny. Post. Biochem., 22, 53.Google Scholar
  31. 31.
    Grzelinska, A. and Sierakowska, A. (1978). Isolation of rish-itin from tomato plants. Phytopathol. Z., 91 (4), 320.Google Scholar
  32. 32.
    Haard, N.F. and Cody, M. (1978). Stress metabolites in post-harvest fruits and vegetables-role of ethylene. In: Post-harvest Biology and Biotechnology (Hultin, H.O. and Milner, M., Eds.) Food and Nutrition Press, Westport, 111.Google Scholar
  33. 33.
    Hadwiger, L.A. and Beckman, J.M. (1980). Chitosan as a com-ponent of pea and Fusarium solani interactions. Plant Physiol., 66 (2), 205PubMedGoogle Scholar
  34. 34.
    Hahn, M.B., Cline, K., Wade, M., Valent, B.S. and Alberschiem, P. (1977). Isolation of a glucan elicitor from yeast and the role of such glucans as general stimulants of phytoalexin accumulation. Plant Physiol., 59 (6), 67.Google Scholar
  35. 35.
    Hampson, M. and Haard, N.F. (1980). Pathogenesis of Synchy-trium endobioticum: 1. Infection responses in potato and tomato. Canadian J. Plant Pathology, 2, 143.Google Scholar
  36. 36.
    Hargreaves, J.A. (1979). Investigations into the mechanisms of mercuric chloride stimulated phytoalexin accumulation in Physeolus vulgaris cultivar prince and Pisum sativum cultivar alaska. Physiol. Plant Pathol., 15 (3), 279.Google Scholar
  37. 37.
    Hargreaves, J. A. and Bailey, J. A. (1978). Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells Physiol. Plant Pathol., 13 (1), 89.Google Scholar
  38. 38.
    Hargreaves, J. A., Mansfield, J. W. and Rosall, S. (1977). Changes in phytoalexin concentrations in tissues of the broad bean plant following innoculation with species of Botrytis. Physiol. Plant Pathol., 11, 227.Google Scholar
  39. 39.
    Harrison, J.G. (1980). Phytotoxicity of wyerone acid, wyerone and wyerone epoxide to field bean leaves. Phytopathol. Z., 97 (1), 14.Google Scholar
  40. 40.
    Henfling, J.W., Bostock, R.M. and Kuc, J. (1980). Cell walls of Phytophthora infestans contain an elicitor of terpene accumulation in potato tuber slices. Phytopathology, 70 (8), 772.Google Scholar
  41. 41.
    Henfling, J.W.D.M., Bostock, R. and Kuc, J. (1980). Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology, 70 (11), 1074.Google Scholar
  42. 42.
    Ingham, J.L. (1976). Fungal modification of pterocarpin phyto-alexins from Melilotus alba and Trifolium pratense. Phytochemistry, 14 (10), 1489.Google Scholar
  43. 43.
    Ingham, J.L. (1980). Induced isoflavanoids of Erythrinia sandwicensis. Z. Naturforsch. Sect. C. Biosci., 35(5), 384Google Scholar
  44. 44.
    Ingham, J.L. (1972). Phytoalexins and other natural products as factors in plant disease resistance. Bot. Rev., 38, 343.Google Scholar
  45. 45.
    Ingham, J.L. (1978). Phytoalexin production by species of the genus Caragana. Z. Naturforsch. Scc. C. Biosci., 34(3), 293Google Scholar
  46. 46.
    Ingham, J.L. (1976). 3, 5, 4’-trihydroxystilbene as a phytoalexin from groundnuts, Arachis hypogaea. Phytochemistry, 15, 1791.Google Scholar
  47. 47.
    Ingham, J.L. and Dewick, P.M. (1979). A new isoflavan phyto-alexin from leaflets of Lotus hispidus. Phytochem., 18 (10) 1711.Google Scholar
  48. 48.
    Ingham, J.L. and Dewick, P.M. (1980). Sparticarpin: A ptero-carpin phytoalexin from Spartium junceum. A. Naturforsch. Teil. C. Biochem. Biophys. Biol. Virol., 35 (3), 197.Google Scholar
  49. 49.
    Ingham, J.L. and Harborne, J.B. (1976). Phytoalexin induction as a new dynamic approach to the study of systematic relationships among higher plants. Nature, 260(5548), 241.Google Scholar
  50. 50.
    Ingham, J.L. and Marksham, K.R. (1980). Identification of the Erythina crista galli phytoalexin cristacarpin and a note on the chirality of other 6 hydroxpterocarpans. Phytochem., 19 (6), 1203.Google Scholar
  51. 51.
    Iniguri, Y., Tomiyama, K., Doke, N., Murai, A., Katsui, N., Yagihash, F. and Matsume, T. (1978). Induction of rishitin-metabolizing activity in potato tuber discs by wounding and identification of rishitin metabolites. Phytopathology, 68 (5), 720.Google Scholar
  52. 52.
    Jadhav, S.J., Sharma, R.P. and Salunkhe, D.K. (1981). Naturally occurring toxic alkaloids in foods. CRC Critical Reviews in Tolicology, 9 (1), 21.Google Scholar
  53. 53.
    Johnson, C. and Brannon, D.R. (1973). Xanthotoxin: A phytoalexin of Pastinaca sativa root. Phytochemistry, 12, 2961.Google Scholar
  54. 54.
    Keeler, F.R., Brown, D.R., Douglas, D.R., Staliknecht, G.F. and Young, S. (1976). Teratogenicity of the Solanum alkaloid solasodine and of kennebec potato sprouts in hamster. Bull. Environ. Contain. Toxicol., 15, 522.Google Scholar
  55. 55.
    Keen, N.T. and Breugger, B. (1977). Phytoalexins and chemicals that elicit their production in plants. In: Host plant resistance to pests (Hedin, P.A., Ed.). American Chemical Society, Washington, D.C.Google Scholar
  56. 56.
    Keen, N.T. and Littlefield, L.J. (1979). The possible associ-ation of phytoalexins with resistance gene expression in flax to Melampora Lini. Physiol. Plant Pathol., 14(3), 265.Google Scholar
  57. 57.
    Kim, W.K. and Uritani, L. (1974). Fungal extracts that induce phytoalexins in sweet potato roots. Plant Cell Physiology, 14 (6), 1093.Google Scholar
  58. 58.
    Kuc, J. (1972). Phytoalexins. Ann. Rev. Phytopath., 9, 207.Google Scholar
  59. 59.
    Kuc, J. (1976). Phytoalexins. In: Physiological Plant Path-ology (Heitefuss, R. and Williams, P.H., Eds.), Springer Verlag, N.Y.Google Scholar
  60. 60.
    Kuc, J., Henfling, J., Garas, N. and Doke, N. (1979). Control of terpenoid metabolism in the potato Phytophthora infes-tans interaction. Journal of Food Protection, 42 (6), 508.Google Scholar
  61. 61.
    Kuhn, P.J. and Smith, D.A. (1979). Isolation from Fusarium solani of an enzymatic system responsible for kievitone and phaseolidin detoxification. Physiol. Plant Pathol., 14 (2), 179.Google Scholar
  62. 62.
    Langcake, P., and Pyrce, R.J. (1977). The production of reseratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16, 1193.Google Scholar
  63. 63.
    Lappe, V. and Barz, W. (1978). Degradation of pisatin by fungi of the genus Fusarium. X. Naturforsch. 33(3), 301.Google Scholar
  64. 64.
    Lyne, R.L., Mulheirn, L.J. and Leworthy, D.P. (1976). New pterocarpenoid phytoalexins of soybean. J. Chem. Soc. Sec.D., 497.Google Scholar
  65. 65.
    Lyon, G.D. (1976). Metabolism of the phytoalexin rishitin by Botrytis spp. J. General Micro., 96, 225.Google Scholar
  66. 66.
    Lyon, G.D. and Mayo, M.A. (1978). The phytoalexins rishitin effects the viability of isolated plant protoplasts. Phytopath. Z., 92 (4), 298.Google Scholar
  67. 67.
    Manibhushushanrao, K. and Zuber, M. (1979). Disease resistance in cereals. Acta Phytopath. Acad. Sci. Hung., 13, 3.Google Scholar
  68. 68.
    Martin, M. and Dewick, P.M. (1980). Biosynthesis of pterocarpan isoflavan and coumestan metabolites of Medicago sativa. The role of an isofla-3-ene. Phytochemistry, 19 (11), 2341.Google Scholar
  69. 69.
    Martin, M. and Dewick, P.M. (1979). Biosynthesis of the 2-aryl benzofuran phytoalexin Vignafuran in Figna unguiculata. Phytochemistry, 18 (8), 1309.Google Scholar
  70. 70.
    Martin, W.J., Hasling, V.C. and Catalano, E.A. (1976). Ipomeamarone content in disease and nondiseased tissues of sweet potato infected with different pathogens. Phytopathology 66, 678.Google Scholar
  71. 71.
    McMillan, M. and Thompson, J.C. (1979). An outbreak of sus-pected solanine poisoning in school boys. Examination of criteria of solanine poisoning. Q. J. Med., 48, 227.PubMedGoogle Scholar
  72. 72.
    Melitskii, L.V. and Ozeretskovskaya, O.L. (1978). Induced plant immunity to parasitic fungi. Izu. Akad, Nauk. SSR Ser. Biol., 5, 700.Google Scholar
  73. 73.
    Müller, K. and Börger, H. (1940). Experimentelle Untersuchun-gen uber die Phytophthora resistenz der kartoffel. Arb. Biol. Rerchsanstalt. Lander. Forstu. Berlin, 23, 189.Google Scholar
  74. 74.
    Mustava, M. and Dyakov, Y.T. (1978). The connection between supersensitive cell death and phytoalexin production in protective reactions of potato against Phytophthora infestans. Biol. Nauki., 11, 90.Google Scholar
  75. 75.
    Nichols, E.J., Beckman, J.M. and Hadwiger, L.A. (1980). Glyco-sidic enzyme activity in pea tissue and pea-Fusarium solani interactions. Plant. Physiol., 66 (2), 199.PubMedGoogle Scholar
  76. 76.
    Obi, I.M. (1979). Additional phytoalexin-like compounds in HT gene resistance of corn to Helminthosporium turicum. Ann. Appl. Biol., 92 (3), 377.Google Scholar
  77. 77.
    Oku, H., Ouchi, S., Shiraishi, T., Utsumi, K. and Seno, S. (1976). Toxicity of the phytoalexin pisatin to mammalian cells. Proc. Jap. Acad., 52, 33.Google Scholar
  78. 78.
    Olah, A.F. and Sherwood, R.T. (1971). Flavones, Isoflavones, and coumestans in alfalfa infected by Ascochyto imperfecta. Phytopathology, 61, 65.Google Scholar
  79. 79.
    Osman, S.F., Zacharius, R.M., Kalan, E.B., Fitzpatrick, T.J. and Krulick, S. (1979). Stress metabolites of the potato and other Solanaceous plants. Journal of Food Protection, 42 (6), 502.Google Scholar
  80. 80.
    Poswillo, D.E., Soper, D. and Mitchell, S. (1972). Experimen-tal induction of foetal malformation with blighted potato: A preliminary report. Nature, 239, 462.PubMedGoogle Scholar
  81. 81.
    Poswillo, D.E., Soper, D., Mitchell, S.D., Coxon, R.F. and Price, K.R. (1973). Further investigations into the teratogenic potential of imperfect potatoes. Nature, 244, 387.Google Scholar
  82. 82.
    Preston, N.W., Chamberlain, K. and Skipp, R.A. (1975). A 2-arylbenzofuran phytoalexin from cowpea. Phytochemistry 14, 1843.Google Scholar
  83. 83.
    Rahe, J.E. and Arnold, R.M. (1975). Injury related phaseollin accumulation in Phaseolus vulgaris and its implications with regards to specificity of host-parasite interaction. Canadian Journal Botan., 53 (9), 921.Google Scholar
  84. 84.
    Reilly, J.J. and Klarman, W.L. (1980). Thymine dimer and glyceollin accumulation in U.V. irradiated soybean suspension cultures. Environ. Exp. Bot., 20 (2), 131.Google Scholar
  85. 85.
    Renwick, J.H. (1972). Hypothesis-anencephaly and spina bifida are usually preventable by avoidance of a specific but unidentified substance present in certain potato tubers. Brit. J. Prev. Soc. Med., 26, 67.Google Scholar
  86. 86.
    Rich, J.R., Keen, N.T. and Thomas, I.J. (1977). Association of coumestans with the hypersensitivity of lima bean roots to Pratylenchus schribneri. Physiol. Plant Pathol., 10, 105.Google Scholar
  87. 87.
    Robeson, D.J. (1978). Furanoacetylene and isoflavanoid phyto-alexins in Lens culinaris. Phytochenistry, 17, 807.Google Scholar
  88. 88.
    Robeson, D.J. and Harborne, J.B. (1980). A chemical dichotomy in phytoalexin induction within the tribe Viceae of the Leguminosae. Phytochemistry, 19 (11), 2359.Google Scholar
  89. 89.
    Robeson, D.J. and Ingham, J.L. (1979). New pterocarpan phyto-alexins from Lathyrusu nissolia. Phytochem., 18 (10), 1715.Google Scholar
  90. 90.
    Roddick, J.G. (1979). Complex formation between solanaceous steroidal glycoalkaloids and free sterol in vitro. Phytochemistry, 18 (9), 1467.Google Scholar
  91. 91.
    Salunkhe, D.K. and Wu, M.T. (1979). Control of postharvest glycoalkaloid formation in potato tubers. Journal of Food Protection, 42 (6), 519.Google Scholar
  92. 92.
    Sarkar, S.K. and Phan, T. (1979). Naturally occurring and ethylene induced phenolic compounds in carrot root. Journal of Food Protection, 42 (6), 526.Google Scholar
  93. 93.
    Sato, N., Tomiyama, K., Katsui, N. and Masamune, T. (1968). Isolation of rishitin from tubers of interspecific potato varieties containing late blight resistance genes. Ann. Phytopathol. Soc. Japan, 34, 140.Google Scholar
  94. 94.
    Shih, M.J. and Kuc, J. (1974). Alpha-solanine in kennebec leaves and aged tuber slices. Phytochemistry, 13, 997.Google Scholar
  95. 95.
    Shih, M., Kuc, J. and Williams, E.B. (1973). Suppression of steroids in potato tubers. Phytopathology, 63, 821.Google Scholar
  96. 96.
    Shiraishi, T., Oku, H., Isono, H. and Ouchi, S. (1975). The injurious effect of pisatin on the plasma membrane of pea. Plant Cell Physiol., 16 (5), 939.Google Scholar
  97. 97.
    Shiraishi, T., Oku, H., Yamishita, M. and Ouchi, S. (1978). Elicitor and suppressor of pisatin induction in spore germination fluid of pea pathogen Mycophaerella pinodes. Ann. Phytopathol. Soc. Jpn., 44 (5), 659.Google Scholar
  98. 98.
    Shirata, A. (1978). Production of phytoalexin in cortex tissue of mulberry shoot. Ann. Phytopath. Soc. Jpn., 44(4), 485.Google Scholar
  99. 99.
    Smith, D.A., Kuhn, P.J., Bailey, J.A. and Burden, R.S. (1980). Detoxification of phaseolidin by Fusarium solani. Phytochemistry, 19 (8), 1673.Google Scholar
  100. 100.
    Solomos, T. and Laties, G. (1976). Induction of cyanide re-sistant respiration by ethylene. Biochem. Biophys. Res. Comm., 70, 663.PubMedGoogle Scholar
  101. 101.
    Sondheimer, E. (1957). Bitter flavor in carrots. 3. Isolation of a compound with spectral characteristics similar to hydrocarbon extracts of bitter carrots. Food Res., 22, 296.Google Scholar
  102. 102.
    Stoessel, A., Stothers, J.B. and Ward, E.W.B. (1978), Biosyn-thetic studies of streee metabolites from potatoes. Incorporation of sodium acetate carbon-13 into 10 sesquiterpenes. Can. J. Chem. 56 (5), 645.Google Scholar
  103. 103.
    Stynes, B.A., Petterson, D.C., Lloyd, J., Payne, A.L. and Lanigan, G.W. (1979). The production of toxin in annual rye grass Lolium regidum infected with a nematode and Corneybacterium rathayi. Aust. J. Agric. Res., 30(1), 201.Google Scholar
  104. 104.
    Takasugi, M., Nagao, S. and Masamune, T. (1978). Structure of moracin A and B, new phytoalexins from diseased mulberry. Tetrahedron Lett., 9, 797.Google Scholar
  105. 105.
    Terekhova, V.A., Chalova, L.I., Pijakov, Y.T. and Ozertskovskayaw, L. (1980). Effect of phytoalexin inducing metabolites from Phytophthora infestans mycelium on potato protoplasts. Mikol. Fitopatol., 14 (2), 111.Google Scholar
  106. 106.
    Thomas, C.A. and Allen, E.H. (1970). An antifungal polyacety-lene compound from Phytophthora infected safflower. Phytopathology, 60, 361.Google Scholar
  107. 107.
    Tibor, E. (1975). Fitoalexinek. Novenztermeles, 24, 359.Google Scholar
  108. 108.
    Tyusterev, S.L., Tarlakovskii, S.A. and Meloyan, V.V. (1979). Effect of some fungicides and biologically active substances on the biosynthesis of phytoalexins in potato tuber induced by Phytophthora infestans. Nauk, Im. V. Lenina, 9, 18.Google Scholar
  109. 109.
    Uritani, I. (1967). Abnormal substances produced in fungus contaminated foodstuffs. J. Assoc. Off. Anal. Chem., 50, 105.Google Scholar
  110. 110.
    Vanetten, H.D., Mathews, P.S., Tegtmeier, K.J., Dietert, M.F. and Stein, J.I. (1980). The association of pisatin tolerance and demethylation with virulence on pea in Nectria haematococca. Physiol. Plant Pathol., 16(2), 257.Google Scholar
  111. 111.
    Vanetten, H.D. and Stein, J.I. (1978). Differential response of Fusarium solani isolates to pisatin and phaseollin. Phytopathology, 68 (9), 1276.Google Scholar
  112. 112.
    Ward, E.W.B., Stoessl, A. and Stothers, J.B. (1977), Metabo-lism of the sesquiterpenoid phytoalexins capsidiol and rishitin to their 13-hydroxy derivatives by plant cells. Phytochemistry, 16 (12), 2024.Google Scholar
  113. 113.
    Wood, G.E. (1979). Stress metabolites of plants — a growing concern. J. Food Protection, 42 (6), 496.Google Scholar
  114. 114.
    Wood, R.K.S. and Graniti, A. (1976). Specificity in Plant Diseases. Plenum Press, N.Y., 353 pp.Google Scholar
  115. 115.
    Zimmerman, D.C. and Coudron, C.A. (1979). Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol., 63, 536.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Norman F. Haard
    • 1
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations