Hydroxyproline-Rich Glycoproteins in the Cell Wall of Diseased Plants as a Defense Mechanism

  • Marie Thérèse Esquerré-Tugayé
  • Dominique Mazau
  • Alain Toppan
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


The plant cell wall may be considered as a barrier which separates a protoplast from the surrounding medium. Yet it is not a passive barrier, as indicated by active modifications under natural and stress physiology processes such as growth, maturation, ripening, abscission, senescence, and plant-microorganism interactions. This activity results, in part, from the presence of proteins and glycoproteins inside the cell wall. Although already mentioned sixty years ago(l), cell wall proteins were mainly studied after the discovery in the 1960’s (2), that some of these proteins contain high amounts of hydroxyproline (Hyp). This paper is concerned with the study of these Hyp-containing proteins that we will abbreviate, according to their chemical nature, i.e. HRGP (Hydroxyproline Rich Glycoproteins). The following points will be successively considered:
  1. 1 -

    Hydroxyproline-containing components in plants: their occurrence and structural features;

  2. 2 -

    Hydroxyproline-rich glycoproteins in plant-pathogen interactions;

  3. 3 -

    Significance of the accumulation of hydroxyproline-rich glyco-proteins in diseased plants;

  4. 4 -

    Role of cell surface interaction in the elicitation, via ethylene, of hydroxyproline-rich glycoprotein biosynthesis.



Cell Wall Diseased Plant Infected Seedling Cell Surface Interaction Colletotrichum Lagenarium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Tupper-Carey and J.H. Priestley, The composition of the cell-wall at the apical meristern of stem and root, Proc. Roy. Soc. B 95:109 (1923).CrossRefGoogle Scholar
  2. 2.
    D.T.A. Lamport and D.H. Nortcote, Hydroxyproline in primary cell walls of higher plants, Nature 188: 665 (1960).CrossRefGoogle Scholar
  3. 3.
    M.C. Jotterand-Dolivo and P.E. Pilet, Hydroxyproline in cell wall and cytoplasmic fractions from maize roots, Plant. Sci. Lett. 4:183 (1975).CrossRefGoogle Scholar
  4. 4.
    D.T.A. Lamport, Cell wall metabolism, Ann. Rev. Plant Physiol. 21:235 (1970).CrossRefGoogle Scholar
  5. 5.
    A.K. Allen, N.N. Desai, A. Neuberger and J.M. Creeth, Properties of Potato lectin and the nature of its glycoprotein linkages, Biochem. J. 171: 665 (1978).PubMedGoogle Scholar
  6. 6.
    J.A. Boundy, J.S. Wall, J.E. Turner, J.H. Woychik and R.J. Dimler, A mucopolysaccharide containing hydroxyproline from corn pericarp, J. Biol. Chem. 242:2410 (1967).PubMedGoogle Scholar
  7. 7.
    G.B. Fincher, W.H. Sawyer and B.A. Stone, Chemical and physical properties of an arabinogalactanpeptide from wheat endosperm, Biochem. J. 139:535 (1974).PubMedGoogle Scholar
  8. 8.
    H. Hori and S. Sato, Extracellular hydroxyproline-rich glyco-protein of suspension-cultured tobacco cells, Phytochemistry 16:1485 (1977).CrossRefGoogle Scholar
  9. 9.
    R.L. Anderson, A.E. Clarke, M.A. Jermyn, R.B. Knox and B.A. Stone, A carbohydrate-binding arabinogalactan-protein from liquid suspension cultures of endosperm from Lolium multiflorum, Aust. J. Plant Physiol. 4:143 (1977).CrossRefGoogle Scholar
  10. 10.
    M.T. Esquerré-Tugayé, Influence d’une maladie parasitaire sur la teneur en hydroxyproline des parois cellulaires d’epi-cotyles et de pétioles de plantes de melon, CR. Acad. Sei. Paris Serie D 276:525 (1973).Google Scholar
  11. 11.
    D.T.A. Lamport, Hydroxyproline-O-glycosidic linkage of the plant cell wall glycoprotein extensin, Nature 216:1322 (1967).CrossRefGoogle Scholar
  12. 12.
    D.T.A. Lamport, The glycopeptide linkages of extensin : O-D- galactosyl serine and O-L-arabinosyl hydroxyproline, in: “Biogenesis of plant cell wall polysaccharides,” F. Loewus, ed., Acad. Press, New York and London 149 (1973).Google Scholar
  13. 13.
    A.J. Mort and D.T.A. Lamport, Evidence for polysaccharide attachment of extensin in cell walls obtained from tomato cell suspension cultures, Plant Physiol. 56, Suppl. Abstract 80:16 (1975).Google Scholar
  14. 14.
    D.T.A. Lamport, L. Katona and S. Roerig, Galactosyl serine in extensin, Biochem. J. 133:125 (1973).PubMedGoogle Scholar
  15. 15.
    M.T. Esquerré-Tugayé and D.T.A. Lamport, Cell surfaces in Plant-Microorganism interactions. I. A structural investigation of cell wall hydroxyproline-rich glycoproteins which accumu­late in fungus-infected plants, Plant Physiol. 64:314 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Akiyama and K. Kato, Structure of hydroxyproline-arabinoside from tobacco cells, Agric. Biol. Chem. 41:79 (1977).CrossRefGoogle Scholar
  17. 17.
    D.T.A. Lamport and D.H. Miller, Hydroxyproline arabinosides in the Plant kingdom, Plant Physiol. 48:454 (1971).PubMedCrossRefGoogle Scholar
  18. 18.
    M.T. Esquierré-Tugayé and D. Mazau, Les glycoproteines à hydro- xyproline de la paroi végétale, Physiol. Vég. In Press (1981).Google Scholar
  19. 19.
    D. Mazau and M.T. Esquerré-Tugayé, Hydroxyproline et peroxydases dans les parois cellulaires et le cytoplasme de tiges de Melons atteints d’anthracnose, Plant Sci. Lett. 7:119 (1976).CrossRefGoogle Scholar
  20. 20.
    D.T.A. Lamport, Structure and function of Plant Glycoproteins, in “The Biochemistry of plants.” J. Preiss, ed., Academic Press, New York, Vol. 3:501 (1980).Google Scholar
  21. 21.
    M.J. Chrispeels, Synthesis and secretion of hydroxyproline- containing macromolecules in carrots. II. In vivo conversion of peptidyl proline to peptidy hydroxyproline, Plant Physiol. 45:223 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    M.T. Esquerré-Tugayé, C. Lafitte, D. Mazau, A. Toppan and A. Touzé, Cell surfaces in plant-microorganism interactions. II. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defence mechanism, Plant Physiol. 64:320 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    J.E. Barner and J.E. Burton, An in vivo assay for the synthesis of hydroxyproline-rich proteins, Plant Physiol. 66:1044 (1980).CrossRefGoogle Scholar
  24. 24.
    D. Ashford and A. Neuberger, 4-Hydroxyl-L-proline in plant gly- coproteins, Trends in Biochemical Sciences 5:245 (1980).CrossRefGoogle Scholar
  25. 25.
    M.T. Esquerré-Tugayé, Les glycoproteines des surfaces cellu- laires végétales : étude particulière d’une glycoprotéine à hydroxyproline dans les plantes de melon au cours d’une maladie parasitaire, Thèse Doct. Etat, Université de Toulouse (1977).Google Scholar
  26. 26.
    M.T. Esquerré-Tugayé and D. Mazau, Effect of fungal disease on extensin, the plant cell wall glycoprotein, J. Exp. Bot. 25: 509 (1974).CrossRefGoogle Scholar
  27. 27.
    I. Ridge and D.J. Osborne, Hydroxyproline and peroxydases in cell walls of Pisum sativum : regulation by ethylene, J. Exp. Bot. 21:843 (1970).CrossRefGoogle Scholar
  28. 28.
    A. Toppan, M.T. Esquerré-Tugayé and A. Touzé, An improved approach for the accurate determination of fungal pathogens in diseased plants, Physiol. Plant Path. 9:241 (1976).Google Scholar
  29. 29.
    N.N. Desai and A.K. Allen, The purification of potato lectin by affinity chromatography on an N, N’, N”-triacetylchitotri-ose-sepharose matrix, Anal. Biochem. 93:88 (1979).Google Scholar
  30. 30.
    L. Sequeira, Lectins and their role in host-pathogen specific-ity, Annu. Rev. Phytopathol. 16:453 (1978).CrossRefGoogle Scholar
  31. 31.
    R. Dargent and A. Touzé, Etude cinétique, en microscopie élec-tronique, des interactions entre Colletotrichum lagenarium et les cellules foliaires de Cucumis melo, Can. J. Bot. 52: 1319 (1974).CrossRefGoogle Scholar
  32. 32.
    M.T. Esquerré-Tugayé, D. Mazau and A. Toppan, Triggering by fungal components of a defence mechanism involving cell wall glycoproteins in plants, 3rd Int. Congress of Plant Path. München, Section VI: 229 (1978).Google Scholar
  33. 33.
    M. Lieberman, A.T. Kunishi, L.D. Owens, Specific inhibitors of ethylene production as retardants of the ripening process in fruits, in: “Facteurs et régulation de la maturation des fruits.” Coll. Int. CNRS n° 238, Paris (1975).Google Scholar
  34. 34.
    D.O. Adams, S.F. Yang, Ethylene biosynthesis : identification of 1-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA 76:170 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Toppan, D. Roby and M.T. Esquerré-Tugayé, Cell surfaces in plant-microorganism interactions. III. In vivo regulation by ethylene of hydroxyproline-rich accumulation in the cell wall of diseased plants, Plant Physiol. (Submitted for publication).Google Scholar
  36. 36.
    A. Toppan, D. Mazau, A. Touzé and M.T. Esquerré-Tugayé, Produc- tion of ethylene as a result of recognition between plants and fungal pathogens, in: “Proc. Vth Int. Symp. on Glyco-conjugates.” R. Schauer, P. Boer, E. Buddecke, J.F. Kramer, J. Vliegenthart and G. Wiegandt, eds., Georg Thieme Publish­ers, Stuttgart, Kiel (1979).Google Scholar
  37. 37.
    M.T. Esquerré-Tugayé, D. Mazau, A. Toppan and D. Roby, Elicita-tion, via l’éthylène, de la synthese de glycoprotéines pariétales associées à la défense des plantes, in: “Actes du Symposium Phytoalexines et phenomenes d’élicitation chez les plantes”, Ann. Phytopathol. (sous presse) (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Marie Thérèse Esquerré-Tugayé
    • 1
  • Dominique Mazau
    • 1
  • Alain Toppan
    • 1
  1. 1.Centre de Physiologie Végétale - L.A. 241 CNRSUniversité Paul SabatierToulouseFrance

Personalised recommendations