Control of Postharvest Diseases with Antimicrobial Agents

  • Joseph W. Eckert
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


Pathological diseases of fruits and vegetables can be reduced to a certain extent by maintaining the natural resistance of the host, low temperature storage, low oxygen atmospheres, and treatment with growth regulators that delay senescence. However, these beneficial practices may not adequately protect the crop from microbial attack, especially during prolonged storage or movement of the crop through export market channels. This is particularly true for crops of tropical origin such as bananas, sweet potatoes and lemons, that suffer physiological injury at the near-freezing temperatures that are required to inhibit growth of fungi over an extended period of time. The maximum storage life of many fresh fruits and vegetables can be realized only by treating the product with an antifungal agent before storage in an optimal environment. The antimicrobial treatment is not a substitute for a satisfactory storage environment, since these agents rarely influence the rate of physiological deterioration of the fresh product. However, the antimicrobial agent is most efficient when the host possesses intrinsic resistance to infection and the environmental conditions are least favorable for the growth of the pathogen.


Sweet Potato Citrus Fruit Botrytis Cinerea Thiophanate Methyl Postharvest Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burchill, R. T. and Edney, K. L. (1972). As assessment of some new treatments for the control of rotting of stored apples. Ann. Appl. Biol. 72: 249.CrossRefGoogle Scholar
  2. 2.
    Eckert, J. W. (1967). Application and use of postharvest fungi- cides in Fungicides — An Advanced Treatise, Vol. 1, D. C. Torgeson, ed., Academic Press, New York, 287.Google Scholar
  3. 3.
    Eckert, J. W. (1975). Postharvest pathology — general principles in Postharvest Physiology, Handling and Utilization of Tropical and Subtropical Fruits and Vegetables, E. B. Pantastico, ed., Avi Publ. Co., Westport, CT, 393.Google Scholar
  4. 4.
    Eckert, J. W. (1977). Control of postharvest diseases, In Antifungal Compounds. Vol. 1, M. R. Siegel and H. D. Sisler, ed., Marcel Dekker Inc., New York. pp. 269.Google Scholar
  5. 5.
    Eckert, J. W. (1978). Post-harvest diseases of citrus fruits. Outlook on Agric. 9: 225.Google Scholar
  6. 6.
    Eckert, J. W., Kolbezen, M. J. and Kramer, B. A. (1969). Accumulation of o-phenylphenol by citrus fruits and pathogenic fungi in relation to decay control and residues. Proc. 1st Intern. Citrus Symp., Univ. Calif. (Riverside) 2: 1097.Google Scholar
  7. 7.
    Eckert, J. W., Kolbezen, M. J., Rahm, M. L. and Eckard, K. J. (1979). Influence of benomyl and methyl 2-benzimidazole carbamate on the development of Penicillium digitatum in the pericarp of orange fruit. Phytopathology 69: 934.CrossRefGoogle Scholar
  8. 8.
    Krochta, J. M., Carlson, R. A., Ogawa, J. M. and Manji, B. T. (1977). Harvesting into foam reduces tomato losses. Food Technol. 313: 42.Google Scholar
  9. 9.
    Eckert, J. W., and Kolbezen, M. J. (1970). Fumigation of fruits with 2-aminobutane to control certain postharvest diseases. Phytopathology 60: 545.CrossRefGoogle Scholar
  10. 10.
    Eckert, J. W., and Kolbezen, M. J. (1964). 2-Aminobutane salts for control of postharvest decay of citrus, apple, pear, peach and banana fruits. Phytopathology 54: 978.Google Scholar
  11. 11.
    Eckert, J. W., Rahm, M. L. and Kolbezen, M. J. (1972). Fungi- tatic activity of cations of non-aromatic amines. J. Agric. Food Chem. 20: 104.PubMedCrossRefGoogle Scholar
  12. 12.
    Graham, D., Hamilton, G. A., Quinn, C. E. and Ruthven, A. D. 1973). Use of 2-aminobutane as a fumigant for control of gangrene, skin spot and silver scurf diseases of potato tubers. Potato Res. 16: 109.CrossRefGoogle Scholar
  13. 13.
    Bompeix, G. and Morgat, F. (1977). Cires, anti-echaudures, ongicides et conservation des pommes. Fruits 32: 189.Google Scholar
  14. 14.
    Koffman, W., Penrose, L. J., Menzies, A. R., Davis, K. C. and Kaldor, J. (1978). Control of benzimidazole tolerant Penicillium expansum in pome fruit. Scientia Hortic. 9: 31.CrossRefGoogle Scholar
  15. 15.
    Luepschen, N. W., Rohrbach, K. G., Jones, A. C, and Peters, C. L. (1971). Methods of controlling Rhizopus decay and maintaining Colorado peach quality. Colorado State Univ. Expt. Sta. Bull. 547S.Google Scholar
  16. 16.
    Ogawa, J. M., Mathre, J. H. Weber, D. J., and Lyda, S. D. (1963). Effects of 2, 6-dichloro-4-nitroaniline on Rhizopus species and comparison with other fungicides on control of Rhizopus rot of peaches. Phytopathology 53: 950.Google Scholar
  17. 17.
    Wade, N. L. and Gipps, P. G. (1973). Postharvest control of brown rot and Rhizopus in peaches with benomyl and dicloran. Austri. J. Exptl. Agr. Animal Husbandry 13: 600.CrossRefGoogle Scholar
  18. 18.
    Steinbauer, C. E. and Kushman, L. J. (1971). Sweetpotato culture and diseases. U. S. Dept. Agr. Handbook 388: 35.Google Scholar
  19. 19.
    Chastagner, G. A. and Ogawa, J. M. (1979). A fungicide-wax treatment to suppress Botrytis cinerea and protect fresh-market tomatoes. Phytopathology 69: 59.CrossRefGoogle Scholar
  20. 20.
    Eckert, J. W. and Rahm, M. L. (1979). The antifungal activity of alkyl benzimidazole-2-yl-carbamates and related compounds. Pestic. Sci. 10: 473.CrossRefGoogle Scholar
  21. 21.
    Edney, K. L. (1970). Some experiments with thiabendazole and benomyl as postharvest treatments for the control of storage rots of apples. Plant Pathol. 19: 189.CrossRefGoogle Scholar
  22. 22.
    Cho, J. J., Rohrbach, K. G. and Apt, W. G. (1977). Induction and chemical control of rot caused by Ceratocystis paradoxa on pineapples. Phytopathology 67: 700.CrossRefGoogle Scholar
  23. 23.
    Couey, H. M. and Farias, G. (1979). Control of postharvest decay of papaya. Hort. Sci. 14: 719.Google Scholar
  24. 24.
    Löcher, P. and Hampel, M. (1973). Control of postharvest diseases of bananas, pineapples and citrus with carbendazim. Proc. 7th British Insecticide Fungicide Conf. 1:301.Google Scholar
  25. 25.
    Meredith, D. S. (1977). Recent advances in control of post- harvest deterioration using thiabendazole with special reference to tropical and subtropical crops. Proc. 1977 British Crop Protection Conf.Google Scholar
  26. 26.
    Muirhead, I. F. (1976). Postharvest control of mango anthrac- nose with benomyl and not water. Austral. J. Exptl. Agr. Animal Husbandry 16: 600.CrossRefGoogle Scholar
  27. 27.
    Ben-Aire, R. (1975). Benzimidazole penetration, distribution and persistence in postharvest treated pears. Phytopathology 65: 1187.Google Scholar
  28. 28.
    Phillips, D. J. (1975). Detection and translocation of benomyl in postharvest-treated peaches and nectarines. Phytopathology 65: 255.CrossRefGoogle Scholar
  29. 29.
    Meredith, D. S. (1975). Control of fungal diseases of seed potatoes with thiabendazole. Proc. 8th British Insectic. Fungic. Conf. 2: 581.Google Scholar
  30. 30.
    Boyd, A. E. W. (1975). Fungicides for potato tubers. Proc. 8th British Insectic. Fungic. Conf. 3: 1035.Google Scholar
  31. 31.
    Logan, C., Copeland, R. B. and Little, G. (1975). Potato gangrene control by ultra low volume sprays of thiabendazole. Ann. Appl. Biol. 80: 199.CrossRefGoogle Scholar
  32. 32.
    Chiba, M. and Doornbos, F. (1974). Instability of benomyl in various conditions. Bull. Envir. Contam. Toxicol. 11: 273.CrossRefGoogle Scholar
  33. 33.
    White, E. R., Bose, E. A., Ogawa, J. M., Manji, B. T. and Kilgore, W. W. (1973). Thermal and base-catalyzed hydrolysis products of the systemic fungicide, benomyl. J. Agr. Food Chem. 21: 616.CrossRefGoogle Scholar
  34. 34.
    Vonk, J. W. and Kaars-Sijpesteijn, A. (1971). Methyl ben- zimidazole- 2-yl- carbamate, the fungitoxic principle of thiophanate methyl. Pestic. Sci. 2:160.CrossRefGoogle Scholar
  35. 35.
    Harding, P. R. Jr. (1962). Differential sensitivity to sodium o-phenylphenate by biphenyl-sensitive and biphenyl-resistant strains of Penicillium digitatum. Plant Disease Reptr. 46: 100.Google Scholar
  36. 36.
    Eckert, J. W. and Wild, B. L. (1981). Problems of fungicide resistance in Penicillium rot of citrus fruits. in Pest Resistance to Pesticides: Challenges and Prospects, C. P. Georghiou and T. Saito, eds., Plenum Press (in Press).Google Scholar
  37. 37.
    Harding, P. R. Jr. (1972). Differential sensitivity to thia- bendazole by strains of Penicillium italicum and P. digitatum. Plant Disease Reptr. 56: 256.Google Scholar
  38. 38.
    McDonald, R. E., Risse, L. A., and Hillebrand, B. M. (1979). Resistance to thiabendazole and benomyl of Penicillium digitatum and P. italicum isolated from citrus fruit from several countries. J. Amer. Soc. Hort. Sci. 104:333.Google Scholar
  39. 39.
    Bertrand, P. F. and Saulie-Carter, J. L. (1978). The occurrence of benomyl-tolerant strains of Penicillium expansum and Botrytis cinerea in the mid-Columbia region of Oregon and Washington. Plant Disease Reptr. 62:302.Google Scholar
  40. 40.
    Rosenberger, D. A. and Meyer, F.. W. (1979). Benomyl-tolerant Penicillium expansum in apple packing houses in Eastern New York. Plant Disease Reptr. 63: 37.Google Scholar
  41. 41.
    Kuramoto, T. (1976). Resistance to benomyl and thiophanate- methyl in strains of Penicillium digitatum and P. italicum in Japan. Plant Disease Reptr. 60: 168.Google Scholar
  42. 42.
    Kuramoto, T. and Yamada, S. (1976). DF- 125, a new experi- mental fungicide for control of satsuma mandarin postharvest decays. Plant Disease Reptr. 60: 809.Google Scholar
  43. 43.
    Kaplan, H. J. and Dave, B. A. (1979). The current status of imazalil: a postharvest fungicide for citrus. Proc. Fla. State Hort. Soc. 92: 37.Google Scholar
  44. 44.
    Laville, E. Y., Harding, P. R. Dagan, Y. Rahat, M., Kraght, A. J., and Rippon, L. E. (1977). Studies on imazalil as a potential treatment for control of citrus fruit decay. Proc. Int. Soc. Citriculture 1: 259.Google Scholar
  45. 45.
    Birchmore, R. J., Brookes, R. F., Copping, L. G., and Wells, W. H. (1977). BTS 40 542 — A new broad spectrum fungicide. Ninth British Insect. Fungicide Conf. 2: 593.Google Scholar
  46. 46.
    Spalding, D. H. (1980). Control of Alternaria rot of tomatoes by postharvest application of imazalil. Plant Disease Reptr. 64: 169.CrossRefGoogle Scholar
  47. 47.
    Anonymous (1980). Imazalil: a new weapon in the fruit decay battle. Citrograph 65: 95.Google Scholar
  48. 48.
    Rosenberger, D. A., Meyer, F. A. and Cecilia, C. V. (1979). Fungicide strategies for control of benomyl-tolerant Pencillium expansum in apple storages. Plant Disease Reptr. 63: 1033.Google Scholar
  49. 49.
    Bompeix, G., Coeffic, M., and Greiffier, P. (1979). Lutte contre les pourritures des peches a Monilia sp., Botrytis sp. et Rhizopus sp. Fruits 34: 423.Google Scholar
  50. 50.
    Van Gestel, J., Heeres, J., Janssen, M. and Van Reet, G. (1980). Synthesis and screening of a new group of fungicides: l-(2-phenyl-l, 3-dioxolan-2-yl-methyl)-l, 2, 4-triazoles. Pestic. Sci. 11: 95.CrossRefGoogle Scholar
  51. 51.
    Brown, G. E. (1979). Biology and control of Geotrichum candidum, the cause of citrus sour rot. Proc. Fla. State Hort. Soc. 92: 186.Google Scholar
  52. 52.
    Chitzanidis, A. and Laskaris, D. (1980). Effects of postharvest dips of oranges in metalaxyl against brown rot. Proc. 5th Congress of the Mediterranean Phytopathological Union. Patras, Greece, Sept. 1980. pp 151.Google Scholar
  53. 53.
    Edney, K. L. and Chambers, D. A. (1981). Postharvest treatments for the control of Phytophthora syringae storage rot of apples. Ann. Appl. Biol. 97: 237.CrossRefGoogle Scholar
  54. 54.
    Davidse, L. C. and Flach, W. (1977). Differential binding of methyl benzimidazole-2-yl-carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell Biol. 72: 174.PubMedCrossRefGoogle Scholar
  55. 55.
    Davidse, L. C. and Flach, W. (1978). Interaction of thiabenda- zole with fungal tubulin. Biochem. Biophys. Acta 543: 82.PubMedCrossRefGoogle Scholar
  56. 56.
    Leroux, P. and Gredt, M. (1978). Effets de quelques fungicides systemiques sur la biosyntheses de l’Ergosterol chez Botrytis cinerea Pers., Penicillium expansum Link et Ustilago maydis (DC) Cda. Ann. Phytopathology 10: 45.Google Scholar
  57. 57.
    Prusky, D., Bazak, M., and Bendrie, R. (1980). Tolerance of Penicillium expansum in Israel to postharvest fungicide treatments. Proc. 5th Congress Mediterranean Phytopath. Union, Patras, Greece, Sept. 21–27. Published by the Hellenic Phytopath Soc.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Joseph W. Eckert
    • 1
  1. 1.Department of Plant PathologyUniversity of CaliforniaRiversideUSA

Personalised recommendations