The General Biology of Plant Senescence and the Role of Nucleic Acid in Protein Turnover in the Control of Senescence Processes which are Genetically Programmed

  • Harold W. Woolhouse
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


There are two terms “ageing” and “senescence” which are widely used in reference to changes which impair the structure or functioning of living organisms. Medawar (1) defined ageing as referring to all those changes which occur in time, without reference to death as a consequence, indeed its use need not be confined to living organisms. This is a convenient definition in that it allows of a clear distinction of senescence as describing those changes which lead sooner or later to the death of an organism or some part of it. As Medewar puts it “It is a curious thing that there is no word in the English language that stands for the mere increase in years; that is for ageing silenced of its overtones of increasing deterioration and decay. At present we are obliged to say that Dorian Gray did not exactly ‘age’ though to admit that he certainly grew older. We obviously need a word for mere ageing, and I propose to use ‘ageing’ itself for just that purpose. ‘Ageing’ hereafter stands for mere ageing, and has no other innuendo. I shall use the word ‘senescence’ to mean ageing accompanied by that decline of bodily faculties and sensibilities and energies which ageing colloquially entails. Dorian Gray aged, but only his portrait disclosed the changes of senescence. I hope that makes it clear.”


Leaf Senescence General Biology Plant Senescence Perilla Frutescens Lamellar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Medawar, A unsolved problem of biology. Reprinted in “The Uniqueness of the Individual,” Methuen, London (1957).Google Scholar
  2. 2.
    H. W. Woolhouse. Senescence processes in the life cycle offlowering plants. Bioscience, 28:25 (1978).Google Scholar
  3. 3.
    C. W. Minot, The Problem of Age, Growth and Death, G. P. Putnam’sSons, London. (1908).Google Scholar
  4. 4.
    W. Pfeffer, The Physiology of Plants, Volume 2 Transi. by A. J. Ewart, Clarenden Press, Oxford (1903).Google Scholar
  5. 5.
    D. W. Thompson, On Growth and Form. 2nd Edition Cambridge University Press, (1942).Google Scholar
  6. 6.
    P. F. Wareing and A. K. Seth, Aging and Senescence in the whole plant. Symposium of Society for Experimental Biology 21: 543 (1967).Google Scholar
  7. 7.
    D. H. Maggs, The distance from tree base to shoot origin as a factor in shoot and tree growth. J. Hort. Sci. 39:298 (1964).Google Scholar
  8. 8.
    M. Möbius. Beiträge zur lehre von der Fort — pflanzung der Gewäsche. Gustav Fischer, Jena, Germany (1897).Google Scholar
  9. 9.
    K. Sax, Aspects of Ageing in Plants. Ann. Rev. Plant Physiol. 13:489 (1962).Google Scholar
  10. 10.
    N. P. Krenke, Regeneratsiya rastenii. Izd. Akad. Nauk. USSR, Moscow-Leningrad (1950).Google Scholar
  11. 11.
    O.V.S. Heath, Ageing in higher plants. In: The Biology of Ageing. ed., W. B. Yapp and G. H. Bourne, Symposium of the Institute of Biology 6: 9 (1957).Google Scholar
  12. 12.
    V. C. Wynn-Edwards, Animal dispersion in relation to social behaviour. Oliver and Boyd, Edinbergh and London (1962).Google Scholar
  13. 13.
    A. Comfort, The Biology of Senescence. Routledge and Kegan Paul, London (1956).Google Scholar
  14. 14.
    A. Comfort, The Biology of Senescence. Routledge and Kegan Paul, London (1956).Google Scholar
  15. 15.
    J. Maynard Smith, The causes of ageing, Proceedings of the Royal Society, London (B), 157:115 (1962).Google Scholar
  16. 16.
    A. Comfort, Ageing: The Biology of Senescence, Routledge and Kegan Paul, London (1965).Google Scholar
  17. 17.
    T. King. See Reference 13 (1933).Google Scholar
  18. 18.
    R. B. Setlow and W. L. Carrier, The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. Natl. Acad. Sci. USA 51:226 (1964).PubMedGoogle Scholar
  19. 19.
    R. P. Boyce and P. Howard-Flanders, Release of Ultraviolet light-induced thymine dimers from DNA in E.coli K12, Proc. Natl. Acad. Sci. USA 51:293 (1964).Google Scholar
  20. 20.
    R. W. Hart and R. B. Setlow, Correlation between deoxyribonucleic acid excission-repair and life-span in a number of mammalian species, Proc. Natl. Acad. Sci. USA 71: 2169 (1974).PubMedGoogle Scholar
  21. 21.
    R. E. Rasmussen and R. B. Painter, Radiation-stimulated DNA- synthesis in cultured mammalian cells. J. Cell Biol. 29:11 (1966).PubMedGoogle Scholar
  22. 22.
    R. B. Setlow, J. D. Regan and W. L. Carrier, Biophysical Society Abstracts 12:19a (1972).Google Scholar
  23. 23.
    J. E. Cleaver and J. E. Trosko, Absence of excision of ultraviolet-induced cyclobutane dimers in Veroderma pigmentosum, Photochem Photobiol 11:547 (1970).PubMedGoogle Scholar
  24. 24.
    J. E. Cleaver, G. H. Thomas, J. E. Trosko, and J. T. Lett Excision repair (dimer excision, strand breakage and repair replication) in primary cultures of eukaryotic (Bovine) cells, Exp. Cell Res. 74:67 (1972).PubMedGoogle Scholar
  25. 25.
    H. Sober (ed.) Handbook of Biochemistry, Chemical Rubber Company, Cleveland, Ohio (1970).Google Scholar
  26. 26.
    J. D. Regan and R. B. Setlow, In: Chemical Mutagens, ed. A. Hollaender, Plenum, New York 3:151 (1973).Google Scholar
  27. 27.
    C. W. Ferguson, Bristlecone Pine: Science and Esthetics, Science 159:839 (1968).PubMedGoogle Scholar
  28. 28.
    T. Tanada and S. B. Hendricks, Photoreversal of ultravioleteffects in soybean leaves. American J. Bot. 40:634 (1953).Google Scholar
  29. 29.
    T. A. Skokut, J. H. Wu and R. S. Daniel, Retardation of ultraviolet light accelerated chlorosis by visible light or by benzyladenine in Nicotiana glutinosa leaves: changes in amino acid content and chloroplast ultrastructure. Photochem. Photobiol. 25:183 (1977).Google Scholar
  30. 30.
    D. C. Swinton and P. C. Hanawalt, Absence of ultraviolet-stimulated repair replication in the nuclear and chloroplast genomes of Chlamydomonas rheinhardii, Biochem. Biophys. Acta 294:385 (1973).PubMedGoogle Scholar
  31. 31.
    S. Wolff and J. E. Cleaver, Absence of DNA replication afterchemical mutagen damage in Vicia faba Mut. Res. 20:71 (1973).Google Scholar
  32. 32.
    G. D. Small and C. S. Griemann, Repair of pyrimidine dimers in ultraviolet irradiated Chlamydomonas, Photochem. Photobiol. 25:183 (1977).PubMedGoogle Scholar
  33. 33.
    G. P. Howland, Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts, Nature (London) 254:160 (1975).Google Scholar
  34. 34.
    T. M. Sonneborn, Genetic studies on Stenostomium incaudatium n. sp. 1. The nature and origin of differences in individuals formed during vegetative reproduction. J.Exp. Zool. 57:57 (1930).Google Scholar
  35. 35.
    E. Wangermann and E. Ashby, Studies in the morphogenesis of leaves VIII. Part I. Effects of light intensity and temperature on the cycle of ageing and rejuvenation in the vegetative life history of Lemna minor. New Phytol. 50:186 (1951).Google Scholar
  36. 36.
    E. Ashby and E. Wangermann, Studies in the morphogenesis of leaves VII. Part II. Correlative effects of fronds in Lemna minor, New Phytol. 30:200 (1951).Google Scholar
  37. 37.
    E. Wangermann, Studies in the morphogenesis of leaves VIII. A note on the effects of length of day and of removing daughter fronds on ageing of Lemna minor, New Phytol. 51:355 (1952).Google Scholar
  38. 38.
    E. Wangermann and H. J. Lacey, Studies in the morphogenesis of leaves IX. Experiments on Lemna minor with adenine, tris-iodobenzoic acid and ultraviolet radiation. New Phytol. 52: 298 (1953).Google Scholar
  39. 39.
    E. Wangermann and H. J. Lacey. Studies in the morphogenesis of leaves X. Preliminary experiments on the relation between nitrogen nutrition, rate of respiration and rate of ageing of fronds of Lemna minor, New Phytol. 54:182 (1955).Google Scholar
  40. 40.
    F. C. Steward, M. O. Mapes, A. E. Kent and R. D. Holsten, Growth and development of cultured plant cells, Science 145:20 (1964).Google Scholar
  41. 41.
    F. C. Steward, Physiological aspects of organization In: Trends in Plant Morphogenesis, ed. E. G. Cutter, Longmans, Green & Co., London (1966).Google Scholar
  42. 42.
    F. A. L. Clowes and B. E. Juniper, Plant Cells, BlackwellScientific Publication, Oxford (1968).Google Scholar
  43. 43.
    A. W. Robards, Plâsmodesmata in Higher Plants. In: Intercellular communications in plants: Studies on plasmadesmata, ed. B. E. S. Gunning and A. W. Robards, Springer-Verlag, Berlin (1976).Google Scholar
  44. 44.
    R. F. M. Van Steveninck, Cytochemical evidence on ion transport through plasmodesmata, In: Intercellular communication in plants: Studies on plasmodesmata, ed. B.E.S. Gunning and A. W. Robards, Springer-Verlag, Berlin (1976).Google Scholar
  45. 45.
    A. Gibbs, Viruses and Plasmodesmata. In: Intercellular communications in plants: Studies on plasmodesmata, ed. G.E.S. Gunning and A.W. Robards, Springer-Verlag, Berlin (1976).Google Scholar
  46. 46.
    D. M. Prescott, The cell cycle and the control of cellular reproduction, Adv. Genetics 18:99 (1976).Google Scholar
  47. 47.
    R. Braun and K. Behrens, A ribonuclease from Physarum: biochemical properties and synthesis in the mitotic cycle, Biochem. Biophys. Acta 195:87 (1969).PubMedGoogle Scholar
  48. 48.
    M. D. Scharff and E. Robbins, Polyribosome disaggregation during metaphase, Science 151:992 (1966).PubMedGoogle Scholar
  49. 49.
    D. L. Steward, J. R. Shaeffer and R. H. Humphrey, Breakdown and assembly of polyribosomes in synchronized Chinese hamster cells, Science 161:791 (1968).PubMedGoogle Scholar
  50. 50.
    L. D. Hodge, E. Robbins and M. D. Scharff, Persistance of messenger RNA through mitosis in HeLa cells. J. Cell Biol. 40:497 (1969).PubMedGoogle Scholar
  51. 51.
    H. Fan and S. Penman, Regulation of synthesis and processing of nucleolar components in metaphase-arrested cells. J. Mol. Biol. 59:27 (1971).PubMedGoogle Scholar
  52. 52.
    R. M. Groyan and A. Kniazeff, Vaccinia virus infection of synchronized pig kidney cells, J. Virol. 1:1255 (1967).Google Scholar
  53. 53.
    G. S. Stein and D. E. Matthews, Non-histone chromosomal protein synthesis: utilization of pre-existing and newly transcribed messenger RNA’s Science 181:71 (1973).PubMedGoogle Scholar
  54. 54.
    J. Heslop-Harrison, The cytoplasm and its organelles during meiosis. In: Pollen: Development of and Physiology. ed. J. Heslop-Harrison, Butterworths, London (1971).Google Scholar
  55. 55.
    J. H. Taylor, Autoradiographic studies of nucleic acids and proteins during meiosis in Lilium longiflorurn, Am. J. Bot. 46:477 (1959).Google Scholar
  56. 56.
    L. Albertini, Etude autoradiographique des synthesès d’acide ribonucléique (RNA) au cours de la microsporogenèse chez le Rhoes discolor Hanie. C.R.helsd. Séanc. Acad. Sci. Paris, 260:651 (1965).Google Scholar
  57. 57.
    N. K. Das, Inactivation of the nucleolar apparatus during meiotic prophase in corn anthers, Exp. Cell Res. 40:360 (1965).PubMedGoogle Scholar
  58. 58.
    J. J. Sauter, Istoautoradiographische Untersuchung der Proteinsynthese während der Meiosis bei Paeonica tenuifolia L. Naturwiss. 55:187 (1968a).PubMedGoogle Scholar
  59. 59.
    J. J. Sauter, Istoaudioradiographische Untersuchungen zur Ribonucleinsaure-synthese wahre d der Meiosis bei Paeonina tenuifolia, Naturwiss. 55:236 (1968b).PubMedGoogle Scholar
  60. 60.
    A. Mackenzie, J. Heslop-Harrison and H. G. Dickinson, Elimination of ribosomes during meiotic prophase. Nature, Lond. 215:997 (1967).Google Scholar
  61. 61.
    K. Maruyama, Electron microscopic observations of plastids and mitochondria during pollen development in Tradescantia paludosa, Cytologia 33:482 (1968).Google Scholar
  62. 62.
    H. G. Dickinson and J. Heslop-Harrison, The ribosome cycle, nucleoli, and cytoplasmic nucleoids in the meiocytes of Lilium, Protoplasma 69:187 (1970).Google Scholar
  63. 63.
    I. Borodin, Bot. Jahrb. 4:919 (1876).Google Scholar
  64. 64.
    E. Schulze, Über zersetzang und Neubildung von Eiweisstoffen in Lupinekeimlingen. Handw. Jb. 7:411 (1878).Google Scholar
  65. 65.
    K. Mothes, Die Vakuuminfiltration in ernahrungsversuch (Dargestellt au Untersuchungen über die assimilation des ammoniaks), Planta 19:117 (1933).Google Scholar
  66. 66.
    F. G. Gregory and G. K. Sen, Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. Bot. 1:521 (1937).Google Scholar
  67. 67.
    A. Meyer, Eiweisstoffwechsel und vergilben der laublatter von Tropaeolum majus, Flora (Jena) 111:85 (1918).Google Scholar
  68. 68.
    G. Michael, Uber die Beziehungen zwischen Chlorophyll und Eiweissabbau vergelbenden Laublatt von Tropaeolum. Z. Bot. 29:385 (1936).Google Scholar
  69. 69.
    B. Parthier, Untersuchungen über den Aminosäureeinbau in die Blatteiweiss des Tabaks, Flora, Jena 151:368 (1961).Google Scholar
  70. 70.
    K. Hardwick and H. W. Woolhouse, Changes in the composition of leaves of Perilla frutescens during foliar senescence. New Phytol. 66:545 (1967).Google Scholar
  71. 71.
    H. W. Woolhouse, The nature of senescence in plants, Symp.Soc. Expt. Biol. 21:179 (1967).Google Scholar
  72. 72.
    H. W. Woolhouse, Longevity and senescence in plants. Sci. Prog. Oxford 61:223 (1974).Google Scholar
  73. 73.
    H. W. Woolhouse, Cellular and metabolic aspects of senescence in higher plants. In: Biology of Ageing, ed. J. Behnke, C. Finch and J. Moment, Plenum Press (1978).Google Scholar
  74. 74.
    D. D. Davies, The measurement of protein turnover in plants. Adv. Bot. Res. 8:65 (1981).Google Scholar
  75. 75.
    H. W. Woolhouse and T. Batt, The nature and regulation of senescence in plastids. In: Perspectives in Experimental Biology, Vol. 2, ed. N. Sunderland, Pergamon Press, Oxford, (1976).Google Scholar
  76. 76.
    J. W. Friedrich and R. C. Huffaker, Photosynthesis and protein degradation in senescing barley leaves. I: Leaf resistances and ribulose-1, 5-bisphosphate carboxylase, Plant Physiology (1979).Google Scholar
  77. 77.
    K. Hardwick, M. E. Wood and H. W. Woolhouse, Photosynthesis and respiration in relation to leaf age in Perilla frutescens (L) Britt. New Phytol. 67:79 (1968).Google Scholar
  78. 78.
    L. W. Peterson, G. E. Kleinkopf and R. C. Huffaker, Evidence for lack of turnover of ribulose 1–5-diphosphate carboxylase in barley leaves, Plant Physiol. 51:1042 (1973).PubMedGoogle Scholar
  79. 79.
    L. W. Peterson and R. C. Huffaker, Loss of ribulose, 1,5-diphos- phate carboxylase and increase in proteolytic activity during senescence of detached primary barley leaves. Plant Physiol. 55: 1009 (1975).PubMedGoogle Scholar
  80. 80.
    E. Simpson, R. J. Cooke and D. D. Davies, Measurement of protein in leaves of Zea mays using [3H] acetic anhydride and tritiated water. Plant Physiol. 67:1214 (1981).PubMedGoogle Scholar
  81. 81.
    T. Batt and H. W. Woolhouse, Changing activities during senes- cence and sites of synthesis of photosynthetic enzymes in leaves of the labiate, Perilla frutescens (L) Britt. J. J. Exp. Bot. 26:569 (1975).Google Scholar
  82. 82.
    G. C. Kannangara and H. W. Woolhouse, The role of carbon dioxide, light and nitrate in the synthesis and degradation of nitrate reductase in Perilla frutescens, New Phytol. 66:553 (1967).Google Scholar
  83. 83.
    H. Brown, Personal communication (1981).Google Scholar
  84. 84.
    R. D. Butler and E. W. Simon, Ultrastructural aspects of senescence in plants, Adv. Gerontol. Res. 3:73 (1971).Google Scholar
  85. 85.
    B. D. McKersie, J. E. Thompson and J. K. Brandon, x-ray diffraction evidence for decreased lipid fluidity in senescent membranes from cotyledons. Can.J.Bot. 54:1074 (1976).Google Scholar
  86. 86.
    B. D. McKersie and J. E. Thompson, Phase behaviour of chloro-plast and microsomal membranes during leaf senescence. Plant Physiol. 61:639 (1978).PubMedGoogle Scholar
  87. 87.
    J. A. Sacher, Senescence: effects of auxin and kinetin on RNA and protein synthesis in subcellular fractions of fruit and leaf tissue sections. In: Biochemistry and physiology of plant growth substances, ed. F. Wightman and G. Setterfield Runge Press, Ottawa (1967).Google Scholar
  88. 88.
    J. A. Sacher and S. O. Salminen, Comparative studies of effect of auxin and ethylene on permeability and synthesis of RNA and protein, Plant Physiol. 44:1371 (1969).PubMedGoogle Scholar
  89. 89.
    B. W. Pooviah and A. C. Leopold, Deferral of leaf senescence with calcium. Plant Physiol. 52:236 (1973).Google Scholar
  90. 90.
    A. R. J. Eaglesham and R. J. Ellis, Protein synthesis in chloroplasts. I: Light-driven synthesis of membrane proteins by isolated chloroplasts. Biochim. Biophys. Acta. 335–396 (1974).Google Scholar
  91. 91.
    M. Edelman and A. Reisfeld, Synthesis, processing and functional probing of P-32,000, the major membrane protein translated within the chloroplast. In: Geome organization and expression in plants, ed. C. J. Leaver, Plenum Press, London (1980).Google Scholar
  92. 92.
    S. Ochoa and C. de Hars, Regulation of protein synthesis in eukaryotes. Ann. Rev. Biochem. 48:549 (1979).PubMedGoogle Scholar
  93. 93.
    G. I. Jenkins and H. W. Woolhouse, Photosynthetic electron transport during senescence of the primary leaves of Phaseolus vulgaris L. I: Non-cyclic electron transport, J. Exp. Bot. 32:467 (1981).Google Scholar
  94. 94.
    N-H. Chua and N. W. Gilham, The sites of synthesis of the principal thylakoid membrane polypeptides in Chlamydemonas reinhardii J. Cell Biol. 74:441 (1977).PubMedGoogle Scholar
  95. 95.
    J. A. Callow, M. E. Callow and H. W. Woolhouse, In vitro protein synthesis, ribosomal RNA synthesis and polyribosomes in senescing leaves of Perilla, Cell Differentiation 1: 79 (1972).Google Scholar
  96. 96.
    W. Biinger and J. Feieraband, Capacity for RNA synthesis in 70S ribosome-deficient plastids of heat-bleached rye leaves, Planta 149:163 (1980).Google Scholar
  97. 97.
    R. J. Ness and H. W. Woolhouse, RNA synthesis in Phaseolus chloroplasts. 1: Ribonucleic acid synthesis in chloroplast preparations from Phaseolus vulgaris L. leaves and solubilization of the RNA polymerase, J. Exp. Bot. 31:223 (1980a).Google Scholar
  98. 98.
    P. J. Ness and H. W. Woolhouse, RNA synthesis in Phaseolus chloroplasts. II. Ribonucleic acid synthesis in chloroplasts from developing and senescing leaves, J. Exp. Bot. 31:235 (1980b).Google Scholar
  99. 99.
    C. J. Brady and N. S. Scott, The persistance of plastid polyribosomes and Fraction 1 protein synthesis in ageing wheat leaves. In: Colloques internationaux de centre nationale de la recherch scientifique No. 261. Acides nucleiques et synthese des proteines chez les végétaux. ed. L. Bogorad and J. H. Weil, Paris, France (1976).Google Scholar
  100. 100.
    R. W. Brougham, N. Z. Jl. Agric. Res. 1:707 (1959).Google Scholar
  101. 101.
    K. V. Thimann, The senescence of leaves. In: Senescence in plants, ed. K. V. Thimann, C.R.C. Press Boca Raton (1980).Google Scholar
  102. 102.
    D. A. Teffer and D. E. Fosket, Hormone-mediated translational control of protein synthesis in cultured cells of Glycine max, Develop. Biol. 62:486 (1978).Google Scholar
  103. 103.
    M. E. Callow and H. W. Woolhouse, Changes in nucleic acid metabolism in regreening .leaves of Perilia, J. Exp. Bot. 24: 285 (1973).Google Scholar
  104. 104.
    S. G. Siddell and R. J. Ellis, Protein synthesis in chloroplasts. VI: Characteristics and products of protein synthesis in vitro in etioplasts and developing chloro-plasts from pea leaves, Biochem. J. 146:675 (1975).PubMedGoogle Scholar
  105. 105.
    J. Silverthorne and R. J. Ellis, Protein synthesis in chloroplasts. VIII: Differential synthesis of chloroplast protein during spinach leaf development. Biochem. Biophys. Acta 607: 319 (1980).PubMedGoogle Scholar
  106. 106.
    L. Bogorad, S.O. Jolly, G. Kidd, G. Link and L. Mcintosh, Organization and transcription of maize chloroplast genes. In: Genome organization and expression in plants, ed. C. J. Leaver, Plenum Press (1980).Google Scholar
  107. 107.
    J. R. Bedbrook, R. Kolodner and L. Bogorad, Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat, Cell 11:739 (1977).PubMedGoogle Scholar
  108. 108.
    B. L. Jenni and E. Stutz, Physical mapping of the ribosomal DNA region in Euglena gracilis Eur. J. Biochem. 88:127 (1978).PubMedGoogle Scholar
  109. 109.
    N. Chu and K. K. Tewari, Arrangement of the ribosomal RNA genes in the restriction endonuclease map of pea chloroplast DNA. Citation by T. A. Dyer, J. R. Bedbrook, Genes coding for chloroplast ribosomal RNA. In: Genome organization and expression in plants, ed. C. J. Leaver, Plenum Press (1979).Google Scholar
  110. 110.
    G. Burkard, J. Canady, E. Crouse, P. Guillemant, P. Imbault, G. Keith, M. Keller, M. Mubumbila, L. Osorie, V. Sarantoglou, A. Steinmetz and J. H. Weil, Transfer RNAs and amino-acyl-tRNA synthesis in plant organelles. In: Genome organization and expression in plants, ed. C. J. Leaver, Plenum Press (1980).Google Scholar
  111. 111.
    K. Hardwick, M. E. Wood and H. W. Woolhouse, Photosynthesis and respiration in relation to leaf age in Perilla frutescens (L) Britt. New Phytologist 67:79 (1968).Google Scholar
  112. 112.
    O. Tiboni, G. Di Pasquale and C. Cifferi, Purification of the elongation factors present in spinach chloroplasts, Eur. J. Biochem. 92:471 (1980).Google Scholar
  113. 113.
    O. Ciferri, G. Di Pasquale and O. Tiboni, Chloroplast elongation factors are synthesized in the chloroplast. Eur. J. Biochem. 102:331 (1979).PubMedGoogle Scholar
  114. 114.
    S. P. Waters, M. B. Peoples, R. J. Simpson and M. J. Dalling, Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) 1: Peptide hyrolase activity and protein breakdown in the flag leaf, glumes and stem. Planta 148:422 (1980).Google Scholar
  115. 115.
    G. J. von Abrams, An effect of ornithine on degradation of chlorophyl and protein in excised leaf tissue. Z. Pflan-zenphysiol. 72:410 (1974).Google Scholar
  116. 116.
    H. Thomas, Leaf growth and senescence in grasses, Annual Rep. Welsh Plant Breeding Station, Aberystwyth (1975).Google Scholar
  117. 117.
    H. Thomas and J. L. Stoddart, Biochemistry of leaf senescence in grasses. Ann. Appl. Biol. 89:461 (1977).Google Scholar
  118. 118.
    B. I. S. Srivastava, RNA-DNA hybridization competition studies on senescing barley leaves, New Phytol. 71:93 (1972).Google Scholar
  119. 119.
    T. Jakezami and K. Yoshida, Remarkable retardation of the senescence of tobacco leaf discs by cordycepin, an inhibitor RNA polyadenylation Pl. Cell Physiol. 16:1163 (1975).Google Scholar
  120. 120.
    H. Thomas, Delayed senescence in leaves treated with the protein synthesis inhibitor MDMP Plant Sci. Lett. 6:369 (1976).Google Scholar
  121. 121.
    J. S. Knypl and W. Mazurczyk, Arrest of yellowing in senescing leaf discs of maize by growth retardents, coumarin and inhibitors of RNA and protein synthesis, Biol. Plant 12: 199 (1972).Google Scholar
  122. 122.
    S. N. Makovetzki and E. E. Goldschmidt, A requirement for cytoplasmic protein synthesis during chloroplast senescence in the aquatic plant Anacharis canadensis, Pl. Cell Physiol. 17:859 (1976).Google Scholar
  123. 123.
    C. Martin and K. V. Thimann, The role of protein synthesis in the senescence of leaves. 1: The formation of protease, Pl. Physiol. 49:64 (1972).Google Scholar
  124. 124.
    H. Thomas and J. L. Stoddart, Leaf senescence, Ann. Rev. Pl. Physiol. 31:83 (1980).Google Scholar
  125. 125.
    P. De Leo and J. A. Sacher, Control of ribonuclease and acid phosphatase by auxin and abscisic acid during senescence of Rhoes leaf sections, Pl. Physiol. 46:806 (1970).Google Scholar
  126. 126.
    J. A. Sacher and D. D. Davies, Demonstration of de novo synthesis of RNAase in Rheo leaf sections by deuterium oxide labelling. Pl. Cell Physiol. 15:157 (1974).Google Scholar
  127. 127.
    P. Matile, Biochemistry and function of vacuoles, Ann. Rev. Pl. Physiol. 29:193 (1978).Google Scholar
  128. 128.
    A. Ceichanover, H. Heller, S. Elias, A. L. Haas and A. Harsko, ATP-dependant conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. USA 77:1365 (1980a).Google Scholar
  129. 129.
    A. Ciechanover, S. Elias, H. Heller, S. Ferber and A. Hershko, Characterization of the heatstable polypeptide of the ATP-dependant proteolytic system from reticulocytes, J. Biol. Chem. 255:7525 (1980).PubMedGoogle Scholar
  130. 130.
    A. Hershko, A. Ciechanover, H. Heller, A. L. Haas and I. A. Rose, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. USA 73:1783 (1980).Google Scholar
  131. 131.
    H. W. Woolhouse, Biochemical and Molecular Aspects of Plant Senescence. In: Molecular Biology of Plant Development, ed. H. Smith and D. Grierson Blackwells, Oxford,(1981).Google Scholar
  132. 132.
    H. W. Woolhouse and G. I. Jenkins, Physiological responses, metabolic changes and regulation during leaf senescence (1981).Google Scholar
  133. 133.
    H. W. Woolhouse, Hormonal control of senescence-related to reproduction in plants. In: Strategies of plant reproduction, Beltsville Symposia in Agricultural Research VI, ed. W. J. Meudt, US Dept. Agric. Beltsville (1981).Google Scholar
  134. 134.
    R. Wollgiehn, S. Lerbs and D. Munsche, Synthesis of ribosomal RNA in chloroplasts from tobacco leaves of different age. Biochem. Physiol. Pflanzen. 170:381 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Harold W. Woolhouse
    • 1
  1. 1.John Innes InstituteNorwichUK

Personalised recommendations