This paper is a tutorial overview of the factors that affect the stability of artificial multilayers. First, the basic thermodynamics of solutions will be briefly reviewed. Next, the stability of multilayers with continuous structure will be considered. In these multilayers the structure is the same throughout the film and the layering corresponds to a modulation of the composition. Examples are the face-centered cubic films with a [111] texture studied first by Hilliard and co-workers at Northwestern, and amorphous metal or amorphous semiconductor films. Depending on the thermodynamics of the system, the composition modulation can either disappear or sharpen by diffusion. For short modulation repeat lengths, this process must be analyzed with the Cahn-Hilliard theory for the free energy of inhomogeneous systems, which takes into account the contributions from composition gradients. The effect of elastic strain, first formulated by Cahn, needs to be taken into account as well. For large amplitude modulations, the diffusion equations may also become non-linear.


Free Energy Fault Line Repeat Length Composition Profile Total Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Greer and F. Spaepen, in “Synthetic Modulated Structure Materials”, ed. by L.L. Chang and B.C. Giessen, Academic, NY (1985).Google Scholar
  2. 2.
    F. Spaepen, Mat. Res. Soc. Symp. Proc. 37, 295 (1985).CrossRefGoogle Scholar
  3. 3.
    A.L. Greer, Ann. Rev. Mat. Sci. 17, 219 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    Viewpoint Set on Artificially Layered Thin Films, Scripta Met. 20, 441 (1986).CrossRefGoogle Scholar
  5. 5.
    L.S. Darken and R.W. Gurry, “Physical Chemistry of Metals”, McGraw-Hill, New York, (1953).Google Scholar
  6. 6.
    J.C. Slater, “Introduction to Chemical Physics”, Dover, New York (1970)Google Scholar
  7. 7.
    A.H. Cottrell, “Theoretical Structural Metallurgy”, Arnold, London (1965).Google Scholar
  8. 8.
    J.W. Cahn and J.E. Hilliard, J. Chem Phys. 28, 258 (1958).ADSCrossRefGoogle Scholar
  9. 9.
    J.W. Cahn, Acta Met. 9, 795 (1961).CrossRefGoogle Scholar
  10. 10.
    J.E. Hilliard, in “Phase Transformations”, ed. by H.I. Aaronson, ASM, Metals Park, Ohio (1970), p. 497.Google Scholar
  11. 11.
    J.W. Cahn, Trans. Met. Soc. AIME 242, 166 (1968).Google Scholar
  12. 12.
    H.E. Cook, D. de Fontaine and J.E. Hilliard, Acta Met. 17, 765 (1969).CrossRefGoogle Scholar
  13. 13.
    S. M. Prokes and F. Spaepen, Mat Res. Soc. Symp. Proc. 77, (1987) in press.Google Scholar
  14. 14.
    D. de Fontaine, Ph.D. thesis, Northwestern University, 1967.Google Scholar
  15. 15.
    T. Tsakalakos, Scripta Met. 20, 470 (1986).CrossRefGoogle Scholar
  16. 16.
    T. Tsakalakos, Scripta Met. 15, 225 (1981).CrossRefGoogle Scholar
  17. 17.
    H.E. Cook and J.E. Hilliard, J. Appl. Phys 40, 2191 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Cahn, Acta Met. 10, 179 (1962).CrossRefGoogle Scholar
  19. 19.
    E.M. Philofsky and J.E. Hilliard, J. Appl. Phys. 40, 2198 (1969).ADSCrossRefGoogle Scholar
  20. 20.
    G.B. Stephenson, J. Non-Cryst. Solids 66, 393 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    G.B. Stephenson, Scripta Met. 20, 470 (1986).CrossRefGoogle Scholar
  22. 22.
    L.D. Graham and R.W. Kraft, Trans. Met. Soc. AIME 236, 94 (1966).Google Scholar
  23. 23.
    M.P. Rosenblum, F. Spaepen and D. Turnbull, Appl. Phys. Lett. 37, 184 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Prokes and F. Spaepen, Appl. Phys. Lett. 47, 234 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    M. Atzmon and F. Spaepen, Mat. Res. Soc. Symp. Proc. 80, 55 (1987).CrossRefGoogle Scholar
  26. 26.
    A.L. Greer, C.J. Lin and F. Spaepen, Proc. 4th Int. Conf. on Rapidly Quenched Metals (Japanese Institute of Metals, Sendai), eds, T. Masumoto and K. Suzuki, I, 567 (1981).Google Scholar
  27. 27.
    R.C. Cammarata and A.L. Greer, J. Non-Cryst. Solids 61/62, 889 (1984).CrossRefGoogle Scholar
  28. 28.
    S.M. Prokes and F. Spaepen, Mat. Res. Soc. Symp. Proc. 51, 383 (1986).Google Scholar
  29. 29.
    E. Chason and T. Mizoguchi, Mat. Res. Soc. Symp. Proc. 80, 61 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Frans Spaepen
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations