Advertisement

Theoretical Background of Interfaces and Multilayers

  • J. P. Vigneron

Abstract

The considerable progress in material technology has made possible the fabrication of stratified crystals with widely adjustable geometrical parameters [1]. It is generally stressed that the availability of such materials opens the way to condensed-matter physics with reduced dimensionality where quantum size effects become dominant. One thinks of course primarily of the behavior of electrons in these sharp multilayer structures, for which these quantum size effects typically appear between 10 to 1000 Ã in most studied materials. It should be emphasized, however, that all kinds of waves traveling through multilayer structures will be influenced by the stratification of the medium, possibly for other geometrical sizes than those considered for electrons. Photons propagating in heterostructures are not the least interesting of these wave phenomena, from the point of view of the applications.

Keywords

Dielectric Function Electron Energy Loss Spectroscopy Interface Mode Schrodinger Equation Envelope Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a wide review on the physics and applications of multilayer structures, see IEEE Journal of Quantum Electronics, Vol QE, No. 9, September 1986.Google Scholar
  2. 2.
    R. Fuchs and K. L. Kliewer, Phys. Rev. 140, 2076 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, England, 1966).Google Scholar
  4. 4.
    K. L. Kliewer and R. Fuchs, Adv. Chem. Phys. XXVII, 358 (1974)Google Scholar
  5. 5.
    H. Ibach, Phys. Rev. Lett. 24, 1416 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Lucas and M. Sunjic, Phys. Rev. Lett. 26, 229 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, pp. 63–126, Academic Press, New York (1982).Google Scholar
  8. 8.
    A.A. Lucas, J.P. Vigneron, Ph. Lambin, P.A. Thiry, M. Liehr, J.J. Pireaux, and R. Caudano, Intern. J. Quantum Chem.: Quantum Chem. Symposium 19, 687 (1986).Google Scholar
  9. 9.
    A. A. Lucas and J.P. Vigneron, Solid State Commun. 49, 327 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    M. Liehr, P. A. Thiry, J.J. Pireaux and R. Caudano, J. Vac. Sci. Technol. A2, 1079 (1984).ADSGoogle Scholar
  11. 11.
    Ph. Lambin, J.P. Vigneron, A.A. Lucas, P. A. Thiry, M. Liehr, J.J. Pireaux, R. Caudano, and T. J. Kuech, Phys. Rev. Lett. 56, 1842 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    Ph. Lambin, J.P. Vigneron, and A. A. Lucas, Phys. Rev. B 32, 8203 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    E.N. Economou and K. L. Ngai, Adv. Chem. Phys. XXVII, 265 (1974).CrossRefGoogle Scholar
  14. 14.
    H. Raether, Excitation of plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin, 1980) .Google Scholar
  15. 15.
    E. P. Pokatilov and S.L. Beril, Phys. Stat. Sol. (b) 118,567 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    G.F. Giuliani and J.J. Quinn, Phys. Rev. Lett. 51, 919 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    G. F. Giuliani and J.J. Quinn, and R. F. Wallis, J. Phys. (Paris) Colloq. 45, C5–285 (1984).CrossRefGoogle Scholar
  18. 18.
    J.J. Quinn, Solid State Commun. 52, 607 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    K. Huang, Proc. Roy. Soc. London A208, 352 (1951).ADSGoogle Scholar
  20. 20.
    E.N. Economou, Phys. Rev. 182, 539 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    G. Borstel and H. J. Falge, in Electromagnetic Surface Modes (Edited by A. D. Boardman),. p. 219, John Wiley & Son Ltd., New-York (1982).Google Scholar
  22. 22.
    Ph. Lambin, J.P. Vigneron, A.A. Lucas, and A. Dereux, Physica Scripta, 35, 343 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    see, for instance, A. A. Lucas, Physica Scripta, T13, 150 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    S. White and L. J. Sham, Phys. Rev. Lett., 47, 879 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    G. Bastard, Phys. rev. B, 25, 7584 (1982);ADSCrossRefGoogle Scholar
  26. 25a.
    G. Bastard, in Molecular Beam epitaxy and Heterostructures, (Edited by L.L. Chang and K. Ploog) NATO ANSI Series E, vol 87, Martinus Nijhoff, Dordrecht, p. 381 (1985) .CrossRefGoogle Scholar
  27. 26.
    M. Altarelli, in Proceedings of Les Houches Winterschool Semiconductor Superlattices and Heterojunctions (Edited by G. Allan, G. Bastard, N. Boccara, M. Lannoo and M. Voos) Springer-Verlag, 1987.Google Scholar
  28. 27.
    M. F. H. Schuurmans and G.W.’t Hooft, Phys. Rev. B, 31, 8041 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. P. Vigneron
    • 1
  1. 1.Institut de Recherche sur les Interfaces SolidesFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations