Rheed Oscillations in MBE and Their Applications to Precisely Controlled Crystal Growth

  • Tsunenori Sakamoto


It is generally recognized that molecular beam epitaxy (MBE) technology has a number of advantages over conventional growth methods. For example, the real-time in-situ analysis of surface structures during growth is very attractive. For this purpose, reflection high energy electron diffraction (RHEED) has been commonly used, since the geometry of this technique is ideally suited for MBE, and the diffraction patterns contain considerable information about the surface.


Reflection High Energy Electron Diffraction Molecular Beam Epitaxy Growth Intensity Oscillation Growth Interruption Reflection High Energy Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J.Harris, B.A.Joyce and P.J.Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surf. Sci. 103: L90 (1981).CrossRefGoogle Scholar
  2. 2.
    C.E.C.Wood, RED intensity oscillations during MBE of GaAs, Surf. Sci. 108: L441 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    J.H.Neave, B.A.Joyce, P.J.Dobson and N.Norton, Dynamics of film growth of GaAs by MBE from Rheed observation, Appl. Phys. A31: 1 (1983).ADSGoogle Scholar
  4. 4.
    J.M.Van Hove, C.S.Lent, P.R.Pukite and P.I.Cohen, Damped oscillation in reflection high-energy electron diffraction during GaAs MBE, J. Vac. Sci. & Technol. B1 ; 741 (1983).CrossRefGoogle Scholar
  5. 5.
    B.F.Lewis, F.J.Grunthaner, A.Madhukar, T.C.Lee and R. Fernandez, Reflection high energy electron diffraction intensity behavior during homoepitaxial molecular beam epitaxy growth of GaAs and implications for growth kinetics and mechanisms, J. Vac. Sci. & Technol. B3: 1317 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    T.Sakamoto, H.Funabashi, K.Ohta, T.Nakagawa, N.J.Kawai, T.Kojima and Y.Bando, Well defined superlattice structures made by phase-locked epitaxy using RHEED intensity oscillation, Superlattices and Micro-structures 1: 347 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    T.Sakamoto, H.Funabashi, K.Ohta, T.Nakagawa, N.J.Kawai and T.Kojima, Phase-locked epitaxy using RHEED intensity oscillation, Jpn. J. Appl. Phys. 23: L657 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    N.Sano, H.Kata, M.Nakayama, S.Chika, H.Terauchi, Mono- and bi-layer superlattices of GaAs and AlAs, Jpn. J. Appl. Phys. 23: L640 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    K.Sakamoto, T.Sakamoto, S.Nagao, G.Hashiguchi, K.Kuniyoshi and Y.Bando, Reflection high-energy electron diffraction intensity oscillations during GexSi1-x MBE growth on Si(001) substrates, Jpn. J. Appl. Phys. 26: 666 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    T.Sakamoto, N.J.Kawai, T.Nakagawa, K.Ohta and T.Kojima, Intensity oscillations of reflection high-energy electron diffraction during silicon molecular beam epitaxial growth, Appl. Phys. Lett. 47: 617 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    T.Sakamoto and G.Hashiguchi, Si(001)-2×1 single-domain structure obtained by high temperature annealing, Jpn. J. Appl. Phys. 25: L78 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    T.Sakamoto, T.Kawamura and G.Hashiguchi, Observation of alternating reconstructions of silicon(00l) 2×1 and 1×2 using reflection high-energy electron diffraction during molecular beam epitaxy, Appl. Phys. Lett. 48: 1612 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    T.Sakamoto, T.Kawamura, S.Nagao, G.Hashiguchi, K.Sakamoto and K.Kuniyoshi, RHEED intensity oscillations of alternating surface reconstructions during Si MBE growth on single-domain Si(001) 2×1 surface, J. Cryst. Growth 81: 59 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    M.Tanaka, H.Sakaki and J.Yoshino, Atomic-scale structures of top and bottom heterointerfaces in GaAs-AlxGa1-xAs (x=0.2–1) quantum wells prepared by molecular beam epitaxy with growth interruption, Jpn. J. Appl. Phys. 25: 155 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    T.Kojima, N.J.Kawai, T.Nakagawa, K.Ohta, T.Sakamoto and M.Kawashima, Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxial system, Appl. Phys. Lett. 47: 286 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    N.J.Kawai, T.Kojima, F.Sato, T.Sakamoto T.Nakagawa and K.Ohta, Layer-by-layer sublimation and AlAs sublimation stopper formation AlAs-GaAs system observed by RHEED intensity oscillation, in Proc. 12th Int. Symp. on GaAs and Related Compounds, in Karuizawa (1985).Google Scholar
  17. 17.
    J.M.Van Hove and P.I.Cohen, Mass-action controll of AlGaAs and GaAs growth in moleculer beam epitaxy, Appl. Phys. Lett. 47: 726 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    T.Kawamura, T.Sakamoto and K.Ohta, Origin of azimuthal effect of RHEED intensity oscillations observed during MBE, Surf. Sci. 171: L409 (1986).CrossRefGoogle Scholar
  19. 19.
    T.Kawamura, T.Natori, T.Sakamoto and P.A.Maksym, Calculated of RHEED from stepped Si(001) for interpretation of RHEED oscillation during MBE, Surf. Sci. 181: L171 (1987).CrossRefGoogle Scholar
  20. 20.
    J.C.Bean, L.C.Feldman, A.T.Fiory, S.Nakahara and I.K.Robinson, GexSi1-X/Si strained-layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. & Technol. A2; 436 (1984).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tsunenori Sakamoto
    • 1
  1. 1.Electrotechnical LaboratoryIbaraki, 305Japan

Personalised recommendations