The Structure of Multilayers: X-Ray Studies

  • D. B. McWhan


The quality and complexity of multilayer structures continues to increase, and so does the need for non-destructive accurate structural information. The purpose of these lectures is threefold. First, the importance of using x-ray scattering as the primary routine probe of sample quality is stressed. Second, model calculations of the evolution from disordered one-dimensional to ordered three-dimensional structures are presented. Finally, the different types of x-ray scattering geometries which are being used are compared. These lectures are meant to supplement the review of the structure of chemically modulated films prepared in 1982,1 a discussion of coherence in multilayers with components of differing structure,2 and a survey of the interfaces in multilayers.3


Multilayer Structure Seed Layer Interplanar Spacing Reciprocal Lattice Reciprocal Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. McWhan, Structure of Chemically Modulated Films in Synthetic Modulated Structures, L. L. Chang and B. C. Giessen, Eds., Academic Press, Inc., New York (1985).Google Scholar
  2. 2.
    D. B. McWhan, Structure and Coherence of Metallic Superlattices in Layered Structures, Epitaxy and Interfaces, Gibson and Dawson, Eds., Mat. Res. Soc. Proc., Vol. 37, 493 (1985).CrossRefGoogle Scholar
  3. 3.
    D. B. McWhan and C. Vettier, Interfaces in Metallic Superlattices in Frontiers in Electronic Materials and Processing, L. J. Brillson, Ed., AIP Conf. Proc. No. 138, New York (1986).Google Scholar
  4. 4.
    T. W. Barbee Jr., Layered Synthetic Microstructures (LSM): Reflecting Media for X-ray Optical Elements and Diffracting Structures for the Study of Condensed Matter; Superlattices and Microstructures 1, 311 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma, and I. K. Schuller, Cumulative Disorder and X-ray Line Broadening in Multilayers, Phys. Rev. B 34, 5955 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    D. B. McWhan, M. Gurvitch, J. M. Rowel1, and L. R. Walker, Structure and Coherence of NbAℓ Multilayer Films, J. Appl. Phys. 54, 3886 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    B. M. Clemens and J. G. Gay, The Effect of Layer Thickness Fluctuations on Superlattice Diffraction, Phys. Rev. B 35, 9337 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    S. Hendricks and E. Teller, X-ray Interference in Partially Ordered Layer Lattices, J. Chem. Phys. 10, 147 (1942).ADSCrossRefGoogle Scholar
  9. 9.
    J. Kakinokl and Y. Komura, Intensity of X-ray Diffraction by a One-dimensionally Disordered Crystal, J. Phys. Soc. Japan 7, 30 (1952).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Neumann, H. Zabel, and H. Monkoi, X-ray Evidence for a Terraced GaAs/ALAS Superlattice, Appl. Phys. Letts. 43, 59 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    A. Segmuller and A. E. Blakeslee, X-ray Diffraction from One-Dimensional Superlattices in GaAs1-xPx Crystals, J. Appl. Cryst. 6, 19 (1973).CrossRefGoogle Scholar
  12. 12.
    J. Kwo, E. M. Gyorgy, D. B. McWhan, M. Hong, F. J. DiSalvo, C. Vettier, and J. E. Bower, Magnetic and Structural Properties of Single-Crystal Rare-Earth Gd-Y Superlattices, Phys. Rev. Letts. 55, 1402 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    P. F. Miceli, H. Zabel, and J. E. Cunningham, Hydrogen-Induced Strain Modulation in Nb-Ta Superlattices, Phys. Rev. Letts. 54, 917 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    C. Vettier, D. B. McWhan, E. M. Gyorgy, J. Kwo, B. M. Buntschuh, and B. W. Batterman, Magnetic X-ray Scattering Study of Interfacial Magnetism in a Gd-Y Superlattice, Phys. Rev. Letts. 56, 757 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    F. Spaepen (this volume).Google Scholar
  16. 16.
    L. K. Templeton, D. H. Templeton, R. P. Phizackene, and K. O. Hodgson, L3-Edge Anomalous Scattering by Gadolinium and Samarium Measured at High Resolution with Synchrotron Radiation, Acta Cryst. A 38, 74 (1982).CrossRefGoogle Scholar
  17. 17.
    R. M. Fleming, D. B. McWhan, J. Kwo, and P. Marsh, to be published.Google Scholar
  18. 18.
    L. Tapper and K. Ploog, Improved Assessment of Structural Properties of ALxGa1-xAs/GaAs Heterostructures and Superlattices by Double-Crystal X-ray Diffraction, Phys. Rev. B 33, 5565 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, X-ray Diffraction of Multilayers and Superlattices, Acta Cryst. A 42, 539 (1986).CrossRefGoogle Scholar
  20. 20.
    A. T. Macrander, E. R. Minami, and D. W. Berreman, Dynamical X-ray Rocking Curve Simulations of Nonuniform InGaAs and InGaAsP using Abeles’ Matrix Method, J. Appl. Phys. 60, 1364 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    V. S. Speriosu and T. Vreeland Jr., X-ray Rocking Curve Analysis of Superlattices, J. Appl. Phys. 56, 1591 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    E. Spiller (This volume).Google Scholar
  23. 23.
    P. F. Miceli, D. A. Neumann, and H. Zabel, X-ray Refractive Index: A Tool to Determine the Average Composition in Multilayer Structures, Appl. Phys. Letts. 48, 24 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    T. W. Barbee Jr., W. K. Warburton, and J. H. Underwood, Determination of the X-ray Anomalous Dispersion of Titanium Made with a Titanium-Argon Layered Synthetic, J. Opt. Soc. Am. B 1, 691 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    C. Vettier, private communication (1986).Google Scholar
  26. 26.
    M. B. Salamon, S. Sinha, J. J. Rhyne, J. E. Cunningham, E. Ross, J. Borchens, and C. P. Flynn, Long Range Incommensurance Magnetic Order in Dy-Y Multilayer, Phys. Rev. Letts. 56, 259 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    M. Hong, R. M. Fleming, J. Kwo, L. F. Schneemeyer, J. V. Waszczak, J. P. Mannaerts, C. F. Majkrzak, Doon Gibbs, and J. Bohr, Synthetic Magnetic Rare-Earth Dy-Y Superlattices, J. Appl. Phys. 61, 4057 (1987).ADSGoogle Scholar
  28. 28.
    J. C. Bean, L. L. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, GexSi1-x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy, J. Vac. Sci. Tech. A 2, 436 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    R. People, Physics and Applications of Ge xSi1-x/Si Strained-Layer Heterostructures, J. Quant. Elect. QE-22. 1696 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    A. Ourmazd and J. C. Bean, Observation of Order-Disorder Transitions in Strained-Semiconductor Systems, Phys. Rev. Lett. 55, 765 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    W. P. Lowe, J. C. Bean, and A. Ourmazd, High Resolution X-ray Studies of GeSi/Si Strained Layer Superlattices, National Synchrotron Light Source Annual Report 1986, Brookhaven National Laboratory, Upton, NY, pg. 356.Google Scholar
  32. 32.
    E. M. Gyorgy, D. B. McWhan, J. R. Dillon Jr., L. R. Walker, and J. V. Waszczak, Magnetic Behavior and Structure of Compositionally Modulated Cu-Ni Thin Films, Phys. Rev. B 25, 6739 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    J. E. Cunningham and C. P. Flynn, Growth of Bicrystal Superlattices: Ru-Ir, J. Phys. F. L221–L226 (1985).Google Scholar
  34. 34.
    A. T. Macrander, R. D. Dupuis, J. C. Bean, and J. M. Brown, X-ray Characterization of Heteroepitaxial Structures with Large Mismatches, Semiconductor-Based Heterostructures Conf. Proc. Met. Soc. AIME, May 1986.Google Scholar
  35. 35.
    W. J. Bartels, Characterization of Thin Layers on Perfect Crystals with a Multipurpose High Resolution X-ray Diffractometer, J. Vac. Sci. Tech. B1 328 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. B. McWhan
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations