Advertisement

Molecular Beam Epitaxy of Artificially Layered Semiconductor Structures — Basic Concept and Recent Achievements

  • Klaus Ploog

Abstract

Molecular beam epitaxy has become a widely used technique for growingepitaxial thin films of semiconductors, metals and dielectrics by impinging thermal-energy beams of atoms or molecules onto a heated substrate under ultra-high vacuum (UHV) conditions /1/. The method provides atomic abruptness between layers of different lattice-matched and lattice-mismatched crystalline materials at their interfaces or heterojunctions. The interfaces between epitaxial semiconductor layers of different composition or doping are used to confine electrons and holes to two or one-dimensional motion. The challenge for the design and growth of artificially layered materials is to minimize scattering from impurities, alloy clusters or interface irregularities so that carriers can move freely along the interfaces. In this article we first discuss the significant factors to attain high-quality MBE growth of crystalline III-V semiconductors, including growth conditions, in-situ analysis and growth control, and dopant incorporation, with a tutorial emphasis. We then describe a few examples for the control of the interface quality by monitoring the oscillations in the intensity of the reflection high energy electron diffraction (RHEED) and for the investigation of structural interface disorder effects in superlattices (SL) and multi quantum well heterostructures (MQWH) by high-resolution double-crystal X-ray diffraction.

Keywords

Reflection High Energy Electron Diffraction Effusion Cell Growth Interruption Reflection High Energy Electron Diffraction Pattern Beam Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent extensive review on MBE see: The Technology and Physics of Molecular Beam Epitaxy, ed. by E.H.C. Parker (Plenum, New York 1985)Google Scholar
  2. 2.
    K.G. Günther: Z. Naturforschg. A 13, 1081 (1958)ADSGoogle Scholar
  3. 3.
    J.R. Arthur: J. Phys. Chem. Solids 28, 2257 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Arthur: J. Appl. Phys. 39, 4032 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    A.Y. Cho: J. Appl. Phys. 41, 782 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    A.Y. Cho: J. Vac. Sci. Technol. 8, S 31 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Bean and S.R. McAfee: J. Physique 43, Colloque C5, 153 (1982)Google Scholar
  8. 8.
    K. Ploog and K. Graf: Molecular Beam Epitaxy of III-V Compounds (Springer, Berlin, Heidelberg 1984)CrossRefGoogle Scholar
  9. 9.
    A.C. Gossard: Thin Solid Films 57, 3 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    C.T. Foxon and B.A. Joyce: In Current Physics in Materials Science, Vol. 7, ed. by E. Kaldis (North-Holland, Amsterdam 1981) 1Google Scholar
  11. 11.
    A.Y. Cho and J.R. Arthur: Progr. Solid State Chem. 10, 157 (1975)CrossRefGoogle Scholar
  12. 12.
    K. Ploog: J. Vac. Sci. Technol. 16, 838 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ludeke: J. Vac. Sci. Technol. 17, 1241 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Neave, B.A. Joyce, P.J. Dobson, and N. Norton: Appl. Phys. A 31 1 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. van Hove, C.S. Lent, P.R. Pukite, and P.F. Cohen: J. Vac. Sci. Technol. B 1, 741 (1983)CrossRefGoogle Scholar
  16. 16.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando: Superlattices and Microstructures 1, 347 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Böiger: Surf. Sci. 168, 423 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    C.E.C Wood: In Physics of Thin Films, Vol. 11, ed. by W.R. Hunter and G. Haas (Academic, New York 1980) 35Google Scholar
  19. 19.
    R.E. Honig and D.A. Kramer: RCA Review 30, 285 (1969)Google Scholar
  20. 20.
    M.A. Herman: Vacuum 32, 555 (1982)CrossRefGoogle Scholar
  21. 21.
    B.B. Dayton: Trans. 2nd American Vacuum Soc. Symp. 5, 5 (1961)Google Scholar
  22. 22.
    J.A. Curless: J. Vac. Sci. Technol. B 3, 531 (1985)CrossRefGoogle Scholar
  23. 23.
    J. Saito and A. Shibatomi: Fujitsu Tech. J. 21, 190 (1985)Google Scholar
  24. 24.
    T.A. Flaim and P.D. Ownby: J. Vac. Sci. Technol. 8, 661 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    C.T. Foxon, B.A. Joyce, and M.T. Norris: J. Cryst. Growth 49, 132 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    K.Y. Chen, A.Y. Cho, W.R. Wagner, and W.A. Bonner: J. Appl. Phys. 52, 1015 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    J.H. Neave, P. Blood, and B.A. Joyce: Appl. Phys. Lett. 36, 311 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    G. Duggan, P. Dawson, C.T. Foxon, and G.W. Hooft: J. Physique 43, Colloque C5, 129 (1982)Google Scholar
  29. 29.
    H. Künzel, J. Knecht, H. Jung, K. Wünstel, and K. Ploog: Appl. Phys. A 28, 167 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    M.B. Panish: J. Electrochem. Soc. 127, 2729 (1980)CrossRefGoogle Scholar
  31. 31.
    A.R. Calawa: Appl. Phys. Lett. 38, 701 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    T. Henderson, W. Kopp. R. Fischer, J. Klem, H. Morkoc, L.P. Erickson, and P.W. Palmberg: Rev. Sci. Instrum. 55, 1763 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    D. Huet, M. Lambert, D. Bonnevie, and D. Dufresne: J. Vac. Sci. Technol. B 3, 823 (1985)CrossRefGoogle Scholar
  34. 34.
    T. Mizutani and K. Hirose: Jpn. J. Appl. Phys. 24, L119 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    P.A. Maki, S.C Palmateer, A.R. Calawa, and B.R. Lee: J. Electrochem. Soc. 132, 2813 (1985)CrossRefGoogle Scholar
  36. 36.
    Y. Ota: Thin Solid Films 106, 3 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    J.C Bean: J. Vac. Sci. Technol. A1, 540 (1983)ADSGoogle Scholar
  38. 38.
    L.L. Chang and K. Ploog: Molecular Beam Epitaxy and Heterostructures (Martinus Nijhoff, Dordrecht 1985) NATO Adv. Sci. Inst. Ser. E 87CrossRefGoogle Scholar
  39. 39.
    H.J. Fronius, A. Fischer, and K. Ploog: Jpn. J. Appl. Phys. 25, L137 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    G.J. Davies, R. Heckingbottom, H. Ohno, C.E.C Wood, and A.R. Calawa: Appl. Phys. Lett. 37, 290 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    K. Oe and Y. Imamura: Jpn. J. Appl. Phys. 24, 119 (1985)CrossRefGoogle Scholar
  42. 42.
    L.P. Erickson, G.L. Carpenter, D.D. Seibel, P.W. Palmberg, P. Pearah, W. Kopp, and H. Morkoc: J. Vac. Sci. Technol. B 3, 536 (1985)CrossRefGoogle Scholar
  43. 43.
    D.E. Mars and J.N. Miller: J. Vac. Sci. Technol. B 4, 571 (1986)CrossRefGoogle Scholar
  44. 44.
    A. J. Springthorpe and P. Mandeville: J. Vac. Sci. Technol. B 4, 853 (1986)CrossRefGoogle Scholar
  45. 45.
    C.T. Foxon, J.A. Harvey, and B.A. Joyce: J. Phys. Chem. Solids 34, 1693 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    A.Y. Cho and K.Y. Cheng: Appl. Phys. Lett. 38, 360 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    E.A. Wood: J. Appl. Phys. 35, 1306 (1964)ADSCrossRefGoogle Scholar
  48. 48.
    A.Y. Cho: J. Appl. Phys. 47, 2841 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    K. Ploog and A. Fischer: Appl. Phys. 13, 111 (1977)ADSCrossRefGoogle Scholar
  50. 50.
    J.H. Neave and B.A. Joyce: J. Cryst. Growth 44, 387 (1978)ADSCrossRefGoogle Scholar
  51. 51.
    S. Holloway and J.L. Beeby: J. Phys. C 11, L247 (1978)ADSCrossRefGoogle Scholar
  52. 52.
    I. Hernandez-Calderon and H. Höchst: Phys. Rev. B 27, 4961 (1983)ADSCrossRefGoogle Scholar
  53. 53.
    B.A. Joyce, J.H. Neave, P.J. Dobson, and P.K. Larsen: Phys. Rev. B 29, 814 (1984)ADSCrossRefGoogle Scholar
  54. 54.
    G. Laurence, F. Simondet, and P. Saget: Appl. Phys. 19, 63 (1979)ADSCrossRefGoogle Scholar
  55. 55.
    A.Y. Cho: J. Appl. Phys. 42, 2074 (1971)ADSCrossRefGoogle Scholar
  56. 56.
    C.E.C. Wood: Surf. Sci. 108, L441 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    C.T. Foxon, M.R. Boundry, and B.A. Joyce: Surf. Sci. 44, 69 (1974)ADSCrossRefGoogle Scholar
  58. 58.
    B.A. Joyce, P.J. Dobson, J.H. Neave, and J. Zhang: Surf. Sci. 174 (1986)Google Scholar
  59. 59.
    A. Madhukar: Surf. Sci. 132, 344 (1983)ADSCrossRefGoogle Scholar
  60. 60.
    J.R. Arthur: Surf. Sci. 43, 449 (1974)ADSCrossRefGoogle Scholar
  61. 61.
    C.T. Foxon and B.A. Joyce: Surf. Sci. 50, 434 (1975)ADSCrossRefGoogle Scholar
  62. 62.
    C.T. Foxon and B.A. Joyce: Surf. Sci. 64, 293 (1977)ADSCrossRefGoogle Scholar
  63. 63.
    C.T. Foxon and B.A. Joyce: J. Cryst. Growth 44, 75 (1978)ADSCrossRefGoogle Scholar
  64. 64.
    M. Ilegems: J. Appl. Phys. 48, 1278 (1977)ADSCrossRefGoogle Scholar
  65. 65.
    K. Ploog, A. Fischer, and H. Künzel: J. Electrochem. Soc. 128, 400 (1981)CrossRefGoogle Scholar
  66. 66.
    N. Duhamel, P. Henoc, F. Alexandre, and E.V.K. Rao: Appl. Phys. Lett. 39 49 (1981)ADSCrossRefGoogle Scholar
  67. 67.
    D.L. Miller and P.M. Asbeck: J. Appl. Phys. 57, 1816 (1985)ADSCrossRefGoogle Scholar
  68. 68.
    Y.C. Pao, T. Hierl, and T. Cooper: J. Appl. Phys. 60, 201 (1986)ADSCrossRefGoogle Scholar
  69. 69.
    J.L. Lievin and F. Alexandre: Electron Lett. 21 413 (1985)ADSCrossRefGoogle Scholar
  70. 70.
    E. Nottenburg, H.J. Bühlmann, M. Frei, and M. Ilegems: Appl. Phys. Lett. 44, 71 (1984)ADSCrossRefGoogle Scholar
  71. 71.
    J.M. Ballingall, B.J. Morris, D.J. Leopold, and D.L. Rode: J. Appl. Phys. 59, 3571 (1986)ADSCrossRefGoogle Scholar
  72. 72.
    M. Heiblum, W.I. Wang, L.E. Osterling, and V. Deline: J. Appl. Phys. 54, 6751 (1983)ADSCrossRefGoogle Scholar
  73. 73.
    R. Sacks and H. Shen: Appl. Phys. Lett. 47, 374 (1985)ADSCrossRefGoogle Scholar
  74. 74.
    L. Gonzales, J.B. Clegg, D. Hilton, J.P. Gowers, C.T. Foxon, and B.A. Joyce: Appl. Phys. A 4l, 237 (1986)ADSCrossRefGoogle Scholar
  75. 75.
    W.I. Wang, E.E. Mendez, T.S. Kuan, and L. Esaki: Appl. Phys. Lett. 47, 826 (1985)ADSCrossRefGoogle Scholar
  76. 76.
    D.L. Miller: Appl. Phys. Lett. 47, 1309 (1985)ADSCrossRefGoogle Scholar
  77. 77.
    H. Nobuhara, O. Wada, and T. Fujii: Electron. Lett. 23, 35 (1987)CrossRefGoogle Scholar
  78. 78.
    A.Y. Cho and I. Hayashi: J. Appl. Phys. 42, 4422 (1971)ADSCrossRefGoogle Scholar
  79. 79.
    C.E.C. Wood, J. Woodcock, and J.J. Harris: Inst. Phys. Conf. Ser. 45, 28 (1979)Google Scholar
  80. 80.
    K. Ploog, A. Fischer, and H. Künzel: Appl. Phys. 22, 23 (1980)ADSCrossRefGoogle Scholar
  81. 81.
    A.Y. Cho: J. Appl. Phys. 46, 1733 (1975)ADSCrossRefGoogle Scholar
  82. 82.
    K. Ploog and A. Fischer: J. Vac. Sci. Technol. 16, 838 (1978)CrossRefGoogle Scholar
  83. 83.
    C.E.C. Wood and B.A. Joyce: J. Appl. Phys. 49, 4854 (1978)ADSCrossRefGoogle Scholar
  84. 84.
    C.E.C. Wood: Appl. Phys. Lett. 33, 770 (1978)ADSCrossRefGoogle Scholar
  85. 85.
    DoS. Jiang, Y. Makita, K. Ploog, and H.J. Queisser: J. Appl. Phys. 53, 999 (1982)ADSCrossRefGoogle Scholar
  86. 86.
    D.A. Andrews, R. Heckingbottom, and G.J. Davies: J. Appl. Phys. 54 4421 (1983)ADSCrossRefGoogle Scholar
  87. 87.
    D.A. Andrews, R. Heckingbottom, and G.J. Davies: J. Appl. Phys. 60, 1009 (1986)ADSCrossRefGoogle Scholar
  88. 88.
    Y. Suzuki and H. Okamoto: J. Appl. Phys. 58, 3456 (1985)ADSCrossRefGoogle Scholar
  89. 89.
    F. Briones, D. Golmayo, L. Gonzales, and A. Ruiz: J. Cryst. Growth 81, 287 (1987)CrossRefGoogle Scholar
  90. 90.
    M. Tanaka, H. Sakaki, and J. Yoshino: Jpn. J. Appl. Phys. 25, L155 (1986)ADSCrossRefGoogle Scholar
  91. 91.
    F. Voillot, A. Madhukar, J.Y. Kim, P. Chen, N.M. Cho, W.C. Tang, and P.G. Newman: Appl. Phys. Lett. 48, 1009 (1986)ADSCrossRefGoogle Scholar
  92. 92.
    T. Isu, D.S. Jiang, and K. Ploog: Appl. Phys. A 43, 75 (1987)ADSCrossRefGoogle Scholar
  93. 93.
    L. Tapfer and K. Ploog: Phys. Rev. B 33, 5565 (1986)ADSCrossRefGoogle Scholar
  94. 94.
    D. Taupin: Bull. Soc. Fr. Minéral. Cristallogr. 87, 496 (1964)Google Scholar
  95. 95.
    P.V. Petrashen: Fiz. Tverd. Tela (Leningrad) 16, 2168 (1974);Google Scholar
  96. 95a.
    P.V. Petrashen: Fiz. Tverd. Tela (Leningrad) 17, 2814 (1975)Google Scholar
  97. 96.
    Special issue of IEEE J. Quantum Electron. QE-22, No. 9 (1986)Google Scholar
  98. 97.
    Proc. 6th Int. Conf. Electron. Prop. Two-Dimens. Systems (EP2DS-VI), Surf. Sci. 170 (1986)Google Scholar
  99. 98.
    Proc. 2nd Int. Conf. Modulated Semicond. Struct. (MSS-2), Surf. Sci. 174 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Klaus Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart-80FR-Germany

Personalised recommendations