Advertisement

Abstract

Multilayer neutron mirrors represent those multilayer structures which have been produced in by far the largest quantity — over 100 m2 since 1977-Many multilayer devices have been used on various neutron spectrometers for several years. The oldest device in continuous use since 1978 is the neutron beam polarizer on the Neutron Spin Echo (NSE) spectrometer (IN11) at the Institut Laue-Langevin (ILL) in Grenoble. There are four vacuum deposition units in operation dedicated to multilayer neutron mirror production: two electron beam gun evaporators at ILL (about 1 m2/week production capacity each), another similar instrument at the Leningrad Institute of Nuclear Physics, and a diode sputtering apparatus at Brookhaven National Laboratory. A fifth machine (a triode sputtering unit with a capacity of 1 – 2 m2/week) is being installed at the Hahn-Meitner-Institute in Berlin. It is already apparent that the need for neutron mirrors amounts to some 200 m2 at least within the next 2 – 4 years.

Keywords

Multilayer Structure Total Reflection Critical Angle Neutron Beam Bragg Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See S.W. Lovesey, “Theory of Neutron Scattering from Condensed Matter”, Clarendon Press, Oxford (1984).Google Scholar
  2. 2.
    I.I. Gurevich and L.V. Tarasov, “Low-energy Neutron Physics”, North Holland, Amsterdam (1968), p. 46.Google Scholar
  3. 3.
    G.M. Drabkin, A.I. Okorokov, A.F. Schebetov, N.V. Borovikova, A.G. Gukasov, V.A. Kurdriashov, V.V. Runov, Nucl. Instr. and Meth. 133:453 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    P. Croce and B. Prado, Nouv. Rev. Opt. Appl. 1:229 (1970);ADSCrossRefGoogle Scholar
  5. 4a.
    J. Schelten and K. Mika, Nucl. Instr. and Meth. 160:287 (1979).ADSCrossRefGoogle Scholar
  6. 5.
    B.P. Schoenborn, D.L.D. Caspar and O.P. Kammerer, J. Appl. Cryst. 7:508 (1974).CrossRefGoogle Scholar
  7. 6.
    A.M. Saxena and B.P. Schoenborn, Acta Cryst. A33:805 (1977).Google Scholar
  8. 7.
    C.F. Majkrzak and L. Passell, Acta Cryst. A4l:4l (1985).Google Scholar
  9. 8.
    F. Mezei, Commun. Phys. 1:81 (1976); a partially similar suggestion has been forwarded by V.F. Turchin in 1967 (unpublished).Google Scholar
  10. 9.
    F. Mezei and P.A. Dagleish, Commun. Phys. 2:41 (1977).Google Scholar
  11. 10.
    P.A. Dagleish, J.B. Hayter and F. Mezei, in: “Neutron Spin Echo”, F. Mezei, ed., Springer Verlag, Heidelberg (1980), p. 66.CrossRefGoogle Scholar
  12. 11.
    O. Schärpf, AIP Conf. Proc. No. 89, J. Faber, ed., American Institute of Physics, New York (1982) p. 182.Google Scholar
  13. 12.
    F. Mezei, in: “Use and Development of Low and Medium Flux Research Reactors”, O.K. Harling, L. Clark, P. von der Hardt, eds., Supplement to Atomenergie — Kerntechnik Vol 44, Karl Thiemig, München (1984), p. 735.Google Scholar
  14. 13.
    T. Ebisawa, N. Achiwa, S. Yamada, T. Akiyoshi and S. Okamoto, J. of. Nucl. Sci, and Techn., 16:647 (1979).CrossRefGoogle Scholar
  15. 14.
    J. Schelten and K. Mika, Nucl. Inst. and Meth., 160:287 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. Mezei
    • 1
  1. 1.Hahn-Meitner-InstitutBerlin 39Germany

Personalised recommendations