The best conventional mirror materials have normal incidence reflectivities R < < 10-4 for soft x-rays (λ ≈ 50Å). The reflectivity decreases to still smaller values proportional to λ4 at shorter wavelengths. These reflectivities are far too low to be of use for x-ray optics; only at very grazing angles are substantial reflectivities obtained with standard mirrors; grazing incidence instruments are presently the main optical components in the x-ray region. Normal incidence optics would have many advantages as easier fabrication, smaller size or larger collection area, smaller aberrations, and larger field size at improved resolution.


Optical Constant High Reflectivity Grazing Incidence Atomic Plane Grazing Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1.
    P.P. Ewald, Ann. Phys. (IV) 49, 1 and 117, (1916).ADSCrossRefGoogle Scholar
  2. 1.2.
    A.H. Compton and S.K. Allison, X-ray in Theory and Experiment, (van Nostrand, New York 1935);Google Scholar
  3. 1.2a.
    R.W. James, The Optical Principles of Diffraction of X Rays (Cornell U. Press, Ithaca NY 1965);Google Scholar
  4. 1.2b.
    M. von Laue, Röntgenstrahl-Interferenzen (Akademischer Verlag, Frankfurt 1960);Google Scholar
  5. 1.2c.
    B.W. Batterman and H. Cole, Review Mod. Phys. 36, 681, (1964).MathSciNetADSCrossRefGoogle Scholar
  6. 1.3.
    F. Abeles, Ann. Physique 12th Series 5, 596–640 and 706–784, (1950).MathSciNetMATHGoogle Scholar
  7. 1.4.
    E. Spüler, Appl. Phys. Lett. 20), (1972); Appl. Opt. 16, 89 (1976); Proc. ICO-IX, Space Optics, Natl. Acad. Science, Washington (1974) p.525.Google Scholar
  8. 1.5.
    C.K. Caraiglia and J.H. Apfel, J. Opt. Soc. Am. 70, 523, (1980).ADSCrossRefGoogle Scholar
  9. 1.6.
    R.H. Miller, Opt. Spectra 9, No.7, 32, (1975).Google Scholar
  10. 1.7.
    B.E. Newnam, J. Opt. Soc. Am. 70, 1051, (1980).ADSGoogle Scholar
  11. 1.8.
    H.E. Bennett, AJ. Glass, A.H. Guenther, B. Newnam, Appl. Opt. 2375, (1980).Google Scholar
  12. 1.9.
    E. Spiller, IBM Techn. Disclosure Bull.16, 3789, (April 1974).Google Scholar
  13. 1.10.
    G. Borrmann, Physikal. Z. 42, 157, (1941).Google Scholar
  14. 2.1.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, and B.K. Fujikawa, AIP Proc. Vol. 75, 340, (1981);ADSCrossRefGoogle Scholar
  15. 2.1a.
    B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimabukuro, and B.K. Fujikawa, Atom. Data and Nucl. Tables, 27, 1, (1982).ADSCrossRefGoogle Scholar
  16. 4.1.
    P.S. Heavens, Optical Properties of Thin Films, (Dover, NY 1965);Google Scholar
  17. 4.1a.
    A. Vasicek, Optics of Thin Films (North Holland, Amsterdam, 1960);MATHGoogle Scholar
  18. 4.1b.
    H.A. Macleod, Thin-Film Optical Filters, (Elsevier, NY, 1969);Google Scholar
  19. 4.1c.
    M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, 1975);Google Scholar
  20. 4.1d.
    P.H. Berning, Theory and Calculations of Optical Thin Films, in Physics of Thin Films. ed. by G. Hass, 1, 69 (Academic Press, NY, 1963).Google Scholar
  21. 4.2.
    T. W. Barbee, W.K. Warburton, and J.H. Underwood, J.O.S.A. B1, 691,(1984);Google Scholar
  22. 4.2a.
    H. van Brug, M.P. Bruijn, R. van der Pol, and M.J. van der Wiel, Appl. Phys. Lett. 49, 914, (1986).ADSCrossRefGoogle Scholar
  23. 4.3.
    O. Litzman and I. Sebelová, Optica Acta, 32, 839, (1985).ADSCrossRefGoogle Scholar
  24. 4.4.
    P.P. Ewald, Ann. Phys., 49, 1, 117, (1916);CrossRefGoogle Scholar
  25. 4.4a.
    P.P. Ewald, Ann. Phys., 54, 519, 557 (1917);CrossRefGoogle Scholar
  26. 4.4b.
    P.P. Ewald, Rev. Mod. Phys. 37, 46, (1963).ADSCrossRefGoogle Scholar
  27. 5.1.
    A.V. Vinogradov and B.Ya. Zeldovich, Appl. Optics 16, 89, (1977).ADSCrossRefGoogle Scholar
  28. 5.2.
    H.J. Hagemann, W. Gudat and C. Kunz, J. Opt. Soc. Am. 65, 742, (1975) and DESY Report SR-74/17.ADSCrossRefGoogle Scholar
  29. 6.1.
    T.W. Barbee Jr., Proc. SPIE Vol.563, 3, (1985).Google Scholar
  30. 6.2.
    E. Spiller, AIP Proc. Vol. 75, 125, (1981).ADSGoogle Scholar
  31. 6.3.
    A. N. Broers and E. Spiller, in Scanning Electron Microscopy, (SEM Inc., AMF O’Hara 1980) p.201, (1980).Google Scholar
  32. 6.4.
    E. Spiller, Proc. SPIE Vol.563, 367, (1985).CrossRefGoogle Scholar
  33. 6.5.
    M.P. Brujn, P. Chakraborty, H. van Essen, J. Verhoeven, M.J. van der Wiel, Proc. SPIE 563, 36, (1985).CrossRefGoogle Scholar
  34. 6.6.
    E. Spüler and A.E. Rosenbluth, Proc. SPIE 563, 221, (1985);CrossRefGoogle Scholar
  35. 6.6a.
    E. Spüler and A.E. Rosenbluth, Optical Engineering 25, 954–963, (1986).Google Scholar
  36. 7.1.
    J. P. Chauvineau, J. Corno, D. Decanini, L. Nevot, and B. Pardo, Proc. SPIE Vol 563, 245, (1985).ADSCrossRefGoogle Scholar
  37. 7.2.
    K.D. Rachocki, D.R. Brown, R.W. Springer, and P.N. Arendt, Applications of Surface Science 18, 165, (1984).ADSCrossRefGoogle Scholar
  38. 7.3.
    E. Ziegler, P. Houdy, and L. Nevot, Proc. SPIE Vol. 563, 306, (1985). M.Yamamoto, A.A. Arai, H. Shibata, and T. Namioka, Conference Digest ICO-13, 626, (1984).CrossRefGoogle Scholar
  39. 7.4.
    Y. Lepetre, I.K. Schuller, G. Rasigni, R. Rivoira and R. Philip, Proc. SPIE Vol. 563, 258, (1985);CrossRefGoogle Scholar
  40. 7.4a.
    A.K. Petford-Long, M.B. Stearns, C.H. Chang, S.R. Nutt, D.G. Stearns, N.M. Ceglio, and A.M. Hawryluk, J. Appl. Phys. 61, 1422, (1987).ADSCrossRefGoogle Scholar
  41. 7.4b.
    H.W. Deckman, J.H. Dunsmuir, and B. Abeles, Appl. Phys. Lett.46, 171, (1985).ADSCrossRefGoogle Scholar
  42. 7.5.
    K. Schuller, Y. Lepetre, E. Ziegler and E. Spiller, Appl. Phys. Lett. 48, 1354, (1986).ADSCrossRefGoogle Scholar
  43. 7.6.
    G. Binning, H. Rohrer, C. Gerber, and W. Weibel, Phys. Rev. Lett. 50, 120, (1983).ADSCrossRefGoogle Scholar
  44. 7.7.
    M.E. Welland and R.H. Koch, Appl.Phys. Lett.48, 724, (1986).ADSCrossRefGoogle Scholar

Additional References Multilayer theory

  1. P. Lee, Optics Commun. 37, 159 (1981).ADSCrossRefGoogle Scholar
  2. J.H. Underwood and T.W. Barbee Jr., AIP Proc. 75, Low Energy X-Ray Diagnostics, 1981, ed. by D.T. Attwood and B.L. Henke, p.176;Google Scholar
  3. J.H. Underwood and T.W. Barbee Jr., Appl. Opt. 20, 3027 (1981).ADSCrossRefGoogle Scholar

Additional References Scattering

  1. J.M. Eastman, in Physics of Thin Films, eds. G. Hass and M.H. Francombe, 10, (1978);Google Scholar
  2. C.K. Carniglia, Opt. Engin. 18, 104 (1979);ADSCrossRefGoogle Scholar
  3. J.M. Elson, J. Opt. Soc. Am. 69, 48 (1979).ADSCrossRefGoogle Scholar

Additional References General Overviews

  1. G.F. Marshall, editor. Applications of Thin Film Multilayered Structures to Figured X-Ray Optics, Proc. SPIE Vol. 563, (1985).Google Scholar
  2. T. W. Barbee Jr., AIP Proc. Vol. 75, Low Energy X-Ray Diagnostics, 1981, ed. D. T. Attwood and B. L. Henke, p. 131, (1981).Google Scholar
  3. E. Spiller, AIP Proc. Vol. 75, 125, (1981).ADSGoogle Scholar

Additional References Tests

  1. L. Golub, E. Spiller, R. J. Bartlett, M. P. Hockaday, D. R. Kania, W. J. Trela, R. Tatchyn, Appl. Opt. 23, 3529, (1984).ADSCrossRefGoogle Scholar
  2. T.W. Barbee, S. Mrowka and M.C. Hettrick, Appl. Opt. 24, 883, (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Eberhard Spiller
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations