Advertisement

Electronic Devices Using Multilayer Structures

  • Serge Luryi

Abstract

The field of resonant tunneling in quantum-well structures is in the state of renaissance. The basic physical phenomena anticipated in such structures were qualitatively understood in the earlier period (1970’s), but their experimental realization had to wait until the maturity of modern epitaxial techniques. Since the early reports, substantial progress has been achieved in the material quality of heterojunction-barrier structures grown by MBE and OMCVD techniques. The interest in such structures has risen further after the remarkable recent experiments of Sollner and coworkers who studied the microwave activity in double-barrier (DB) quantum-well (QW) diodes. These workers have demonstrated a negative differential resistance (NDR) in these diodes directly in the current-voltage characteristics at 77 K (rather than in the derivative of the current as was the case with the first reports) and obtained active oscillations from a DBQW diode mounted in a resonant cavity (Sollner et al., 1984). The material quality of DBQW diode structures has steadily improved to the point that a pronounced NDR can now be observed at room temperature. A review of resonant-tunneling and other perpendicular quantum transport phenomena in double barriers and superlattices, as well as some of their device applications, was recently given by Capasso et al. (1986) and Luryi (1987). Active research going on in many laboratories can be expected to culminate in the implementation of new and exciting devices to be used in the future high-speed electronics.

Keywords

Conducting Layer Alloy Layer Resonant Tunneling Negative Differential Resistance IEEE Electron Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, T., Fowler, A. B., and Stern, F. (1982) Rev. Mod. Phys. 54, 832.CrossRefGoogle Scholar
  2. Bonnefoi, A. R., McGill, T. C., and Burnham, R. D. (1985a) IEEE Electron Device Lett. EDL-6, 636.ADSCrossRefGoogle Scholar
  3. Bonnefoi, A. R., Chow, D. H., and McGill, T. C. (1985b) Appl. Phys. Lett. 47, 888.ADSCrossRefGoogle Scholar
  4. Brown, E. R., Sollner, T. C. L. G., Goodhue, and Parker, C. D. (1987) Appl. Phys. Lett. 50, 83.ADSCrossRefGoogle Scholar
  5. Büttiker, M. (1983) Phys. Rev. B 27, 6178.ADSGoogle Scholar
  6. Büttiker, M. and Landauer, R. (1982) Phys. Rev. Lett. 49, 1739.ADSCrossRefGoogle Scholar
  7. Capasso, F. and Kiehl, R. A. (1985) J. Appl. Phys. 58, 1366.ADSCrossRefGoogle Scholar
  8. Capasso, F., Mohammed, K., and Cho, A. Y. (1986) IEEE J. Quant. Electronics QE-22, 1853.ADSCrossRefGoogle Scholar
  9. Chang, C. Y., Liu, W. C., Jame, M. S., Wang, Y. H., Luryi, S., and Sze, S. M. (1986) IEEE Electron Device Lett. EDL-7, 497.ADSCrossRefGoogle Scholar
  10. Esipov, S. E. and Levinson, I. B. (1986) Zh. Eksp. Teor. Fiz. 90, 330 [Sov. Phys.JETP 63, 191].Google Scholar
  11. V. J. Goldman, D. C. Tsui, and J. E. Cunningham (1987) Phys. Rev. Lett. 58, 1256.ADSCrossRefGoogle Scholar
  12. Grinberg, A. A., Kastalsky, A., and Luryi, S. (1987) IEEE Trans. Electron Devices ED-34, 409.ADSCrossRefGoogle Scholar
  13. Heiblum, M. (1981) Solid State Electron. 24, 343.ADSCrossRefGoogle Scholar
  14. Hess, K. (1983) Physica 117 B, 723.MathSciNetGoogle Scholar
  15. Hess, K., Morkoç, H., Shichijo, H., and Streetman, B. G. (1979) Appl. Phys. Lett. 35, 469.ADSCrossRefGoogle Scholar
  16. Honeisen, B. and Mead, C. A. (1972) Solid State Electron. 15, 891.ADSCrossRefGoogle Scholar
  17. Jogai, B. and Wang, K. L. (1985) Appl. Phys. Lett. 46, 167.ADSCrossRefGoogle Scholar
  18. Kastalsky, A. and Luryi, S. (1983) IEEE Electron Device Lett. EDL-4, 334.ADSCrossRefGoogle Scholar
  19. Kastalsky, A., Luryi, S., Gossard, A. C., and Hendel, R., (1984a) IEEE Electron Device Lett. EDL-5, 57ADSCrossRefGoogle Scholar
  20. Kastalsky, A., Kiehl, R. A., Luryi, S., Gossard, A. C., and Hendel, R. H. (1984b) IEEE Electron Device Lett. EDL-5, 321.CrossRefGoogle Scholar
  21. Kastalsky, A., Luryi, S., Gossard, A. C., and Chan, W. K. (1985a) IEEE Electron Device Lett. EDL-6, 347.CrossRefGoogle Scholar
  22. Kastalsky, A., Abeles, J. H., Bhat, R., Chan, W. K., and Koza, M. (1986a) Appl. Phys. Lett. 48, 71.ADSCrossRefGoogle Scholar
  23. Kastalsky, A., Bhat, R., Chan, W. K., and Koza, M. (1986b) Solid-State Electron. 29, 1073.ADSCrossRefGoogle Scholar
  24. Kazarinov, R. F. and Luryi, S. (1981) Appl. Phys. Lett. 38, 810.ADSCrossRefGoogle Scholar
  25. Kazarinov, R. F. and Luryi, S. (1982) Appl. Phys. A 28, 151.ADSCrossRefGoogle Scholar
  26. Kazarinov, R. F. and Suris, R. A. (1971) Soviet. Phys. — Semicond. 5, 707.Google Scholar
  27. Lang, D. V., People, R., Bean, J. C., and Sergent, A. M. (1985) Appl. Phys. Lett. 47, 1333.ADSCrossRefGoogle Scholar
  28. Lindmayer, J. (1964) Proc. IEEE 52, 1751.CrossRefGoogle Scholar
  29. Levi, A. F. J., Hayes, J. R., and Bhat, R. (1986) Appl. Phys. Lett. 48, 1609.ADSCrossRefGoogle Scholar
  30. Levine, B. F., Malik, R. J., Walker, J., Choi, K. K., Bethea, C. G., Kleinman, D. A., and Vandenberg, J. M. (1987) Appl. Phys. Lett. 50, 273.ADSCrossRefGoogle Scholar
  31. Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J. (1987) Appl. Phys. Lett. 50, 1092.ADSCrossRefGoogle Scholar
  32. Luryi, S. (1985a) Appl. Phys. Lett. 47, 490.ADSCrossRefGoogle Scholar
  33. Luryi, S. (1985b) IEDM-85 Tech. Digest, 666.Google Scholar
  34. Luryi, S. (1985c) IEEE Electron Device Lett. EDL-6, 347.Google Scholar
  35. Luryi, S. (1985d) Physica 134 B, 466.Google Scholar
  36. Luryi, S. (1987a) in Heterojunctions: a Modern View of Band Discontinuities and Device Applications, ed. by F. Capasso and G. Margaritondo (Elsevier Science) Chap. 12.Google Scholar
  37. Luryi, S. (1987b) Phys. Rev. Lett. 58, 2263.ADSCrossRefGoogle Scholar
  38. Luryi, S. and Capasso, F. (1985) Appl. Phys. Lett. 47, 1347.ADSCrossRefGoogle Scholar
  39. Luryi, S. and Kastalsky, A. (1985a) Superlattices and Microstructures 1, 389.CrossRefGoogle Scholar
  40. Luryi, S. and Kastalsky, A. (1985b) Physica 134 B, 453.Google Scholar
  41. Luryi, S., Kastalsky, A., Gossard, A. C., and Hendel, R. H. (1984a) IEEE Trans. Electron Devices ED-31, 832.ADSCrossRefGoogle Scholar
  42. Luryi, S., Kastalsky, A., Gossard, A. C., and Hendel, R. H. (1984b) Appl. Phys. Lett. 45, 1294.ADSCrossRefGoogle Scholar
  43. Luryi, S., Kastalsky, A., and Bean, J. C. (1984c) IEEE Trans. Electron Devices ED-31, 1135.ADSCrossRefGoogle Scholar
  44. Luryi, S., Pearsal, T. P., Temkin, H., and Bean, J. C. (1986) IEEE Electron Device Lett. EDL-7, 104.CrossRefGoogle Scholar
  45. Luryi, S. and Sze, S. M. (1987) in Silicon Molecular Beam Eptitaxy, ed. by E. Kasper and J. C. Bean (CRC Uniscience Press, inc.), to be published.Google Scholar
  46. Malik R. J., Hollis, M. A., Eastman, L. F., Woodard, D. W., Wood, C. E. C., and AuCoin, T. R. (1981) Proc. 8th Biennial Conf. on Active Microwave Semicond. Devices and Circuits, Cornell University.Google Scholar
  47. Morkoc, H., Chen, J., Reddy, U. K., Henderson, T., and Luryi, S. (1986) Appl. Phys. Lett. 49, 70.ADSCrossRefGoogle Scholar
  48. Pearsall, T. P., Temkin, H., Bean, J. C., and Luryi, S. (1986) IEEE Electron Device Lett. EDL-7, 330.CrossRefGoogle Scholar
  49. People, R. (1985) Phys. Rev. B32, 1405.ADSGoogle Scholar
  50. People, R. and Bean, J. C. (1985) Appl. Phys. Lett. 47, 322.ADSCrossRefGoogle Scholar
  51. Rezek, E. A., Holonyak, Jr., N., Vojak, B. A., and Shichijo, H. (1977) Appl. Phys. Lett. 31, 703.ADSCrossRefGoogle Scholar
  52. Ricco, B. and Azbel, M. Ya. (1984) Phys. Rev. B 29, 1970.ADSGoogle Scholar
  53. Sollner, T. C. L. G., Tannenwald, P. E., Peck, D. D., and Goodhue, W. D. (1984) Appl. Phys. Lett. 45, 1319.ADSCrossRefGoogle Scholar
  54. Sollner, T. C. L. G., Le, H. Q., Correa, C. A., and Goodhue, W. D. (1985) Appl. Phys. Lett. 47, 36.ADSCrossRefGoogle Scholar
  55. Stevens, K. W. H. (1983) J. Phys. C 16, 3649.ADSGoogle Scholar
  56. Sze, S. M. (1969) Physics of Semiconductor Devices, 1st edition (Wiley, New York), Chap. 11.Google Scholar
  57. Sze, S. M. and Gummel, H. K. (1966) Solid-State Electron. 9, 751.ADSCrossRefGoogle Scholar
  58. Temkin, H., Pearsall, T. P., Bean, J. C., Logan, R. A., and Luryi, S. (1986) Appl. Phys. Lett. 48, 963.ADSCrossRefGoogle Scholar
  59. Thornber, K. K., McGill, T. C., and Mead, C. A. (1967) J. Appl. Phys. 38, 2384.ADSCrossRefGoogle Scholar
  60. Tsuchiya, M. and Sakaki, H. (1986a) Japan. J. Appl. Phys. 25, L185.ADSCrossRefGoogle Scholar
  61. Tsuchiya, M. and Sakaki, H. (1986b) Appl. Phys. Lett. 49, 88.ADSCrossRefGoogle Scholar
  62. West, L. C. and Eglash, S. J. (1985) Appl. Phys. Lett. 46, 1156.ADSCrossRefGoogle Scholar
  63. Yokoyama N., Imamura, K., Muto, S., Hiyamizu, S., and Nishi, H. (1985) Japan. J. Appl. Phys. 24, L853.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Serge Luryi
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations