Growth of Metallic and Metal-Containing Superlattices

  • Charles M. Falco


Advances in the technology to produce ultra-high vacuums, and in development of several vapor deposition techniques, have now made possible the sequential monolayer-by-monolayer deposition of more than one material (each of which may be an element, alloy, or compound). Nearly flawless semiconductor superlattices have been synthesized, as described in the chapters in this book by E. Kasper, S. Luryi, J-Y. Marzin, D. B. McWhan, P. M. Petroff, K. Ploog, H. Sakaki, T. Sakamoto, C. Weisbuch, and R. H. Williams.


Molecular Beam Epitaxy Structural Coherence Molecular Beam Epitaxy System Superlattice Layer Subsidiary Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, various chapters in “Synthetic Modulated Structures,” edited by L. L. Chang and B. C. Giessen (Academic Press, New York, 1985).Google Scholar
  2. 2.
    “Interfaces, Superlattices and Thin Films,” edited by J. D. Dow and I. K. Schuller (Materials Research Society, Pittsburgh, 1987).Google Scholar
  3. 3.
    See various articles in “Multilayer Structures and Laboratory X-Ray Laser Research,” edited by N. M. Ceglio and P. Dhez (SPIE, Bellingham WA, 688, 1986).Google Scholar
  4. 4.
    See various articles in “Soft X-Ray Optics and Technology,” edited by E-E. Koch and G. Schmahl (SPIE volume 733, Bellingham WA, 1987).Google Scholar
  5. 5.
    N. J. Sato, Appl. Phys. 59 (1986) 2514.CrossRefGoogle Scholar
  6. 6.
    W. R. Bennett, D. C. Person, and C. M. Falco, “Proc. 4th Topical Meeting on Optical Data Storage,” (Optical Society of America, in press)Google Scholar
  7. 7.
    M. Tanaka, H. Yuzurihara, and T. Tokita, IEEE Trans, on Magnetics (in press).Google Scholar
  8. 8.
    Data for semiconductors taken from K. Ploog, Chapter 18 in “The Technology and Physics of Molecular Beam Epitaxy,” edited by E.H.C. Parker (Plenum, New York, 1985). Data for metals from C. M. Falco (unpublished).Google Scholar
  9. 9.
    W. P. Lowe, T. W. Barbee, T. H. Geballe, and D. B. McWhan, Phys. Rev. B 24 (1981) 6193.ADSCrossRefGoogle Scholar
  10. 10.
    J. Makous, C. M. Falco, A. M. Cucolo, and R. Vaglio, “Proc. of 18th Int’l Conf. on Low Temp. Phys.” (in press)Google Scholar
  11. 11.
    J. E. Hilliard, in “Modulated Structures — 1979,” edited by J. M. Cowley, J. B. Cohen, M. B. Salamon and B. J. Wuensch (American Institute of Physics, New York, 1979), p. 407.Google Scholar
  12. 12.
    N. K. Flevaris, D. Baral, J. E. Hilliard, and J. B. Ketterson, Appl. Phys. Letters 38 (1981) 992.ADSCrossRefGoogle Scholar
  13. 13.
    J. Kwo, D. B. McWhan, M. Hong, E. M. Gyorgy, L. C. Feldman, and J. E. Cunningham, in “Layered Structures, Epitaxy and Interfaces,” edited by J. M. Gibson and L. R. Dawson (Materials Research Society, Pittsburgh, 1985), p. 509.Google Scholar
  14. 14.
    S. M. Durbin, J. E. Cunningham, M. E. Mochel, and C. P. Flynn, J. Phys. F: Metals Phys. L223 (1981) 11.Google Scholar
  15. 15.
    S. T. Ruggiero, T. W. Barbee, and M. R. Beasley, Phys. Rev. Lett. 45 (1980) 1299.ADSCrossRefGoogle Scholar
  16. 16.
    Q. S. Yang, C. M. Falco, and I. K. Schuller, Phys. Rev. 27 (1983) 3867.ADSCrossRefGoogle Scholar
  17. 17.
    B. J. Thaler, J. B. Ketterson, and J. E. Hilliard, Phys. Rev. Lett. 41, (1978) 336.ADSCrossRefGoogle Scholar
  18. 18.
    J. Q. Zheng, C. M. Falco, J. B. Ketterson, and I. K. Schuller, Appl. Phys. Lett. 38 (1981) 424.ADSCrossRefGoogle Scholar
  19. 19.
    J. F. Dillon, E. M. Gyorgy, L. W. Rupp, Y. Yafet, and L. R. Testardi, J. Appl. Phys. 52 (1981) 2256.ADSCrossRefGoogle Scholar
  20. 20.
    J. L. Makous and C. M. Falco, to be published.Google Scholar
  21. 21.
    H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures,” (John Wiley, New York, 1974).Google Scholar
  22. 22.
    Figure 5 is a schematic diagram based on a commercial sputtering system designed to produce metallic superlattices (L. M. Simard model DH-1).Google Scholar
  23. 23.
    C. M. Falco, J. Appl. Phys. 65. (1984) 1218.ADSCrossRefGoogle Scholar
  24. 24.
    W. R. Bennett, J. A. Leavitt, C. M. Falco, Phys. Rev. B (in press).Google Scholar
  25. 25.
    C. M. Falco, F. E. Fernandez, P. Dhez, A. Khandar, L. Nevot, B. Pardo, and J. Corno, Proc. of the SPIE, 733, 343 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    I am aware of MBE machines used for growing metallic multilayers at Argonne National Laboratory, University of Arizona, AT&T Bell Laboratories, IBM Almaden and Yorktown, university of Illinois, Johns Hopkins University, and the University of Michigan.Google Scholar
  27. 27.
    Figure 8 is a schematic diagram based on a commercial MBE system designed for silicon epitaxy, with features suitable for producing metallic superlattices (Perkin-Elmer model 433-S).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Charles M. Falco
    • 1
  1. 1.Optical Sciences Center; Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations