Advertisement

Rate Constants and Cross Sections

  • Michael Henchman

Abstract

More is known about the rates of ion-molecule reactions than about those of any other family of chemical reactions. This chapter will not, however, consist of a joyful celebration of that pleasant reality, but rather, the reverse—it will take a somewhat severe look at what we need to know, at what we sometimes think we know; and at what in fact we do know. The ultimate objective, complete and mutual overlap of all three domains, is very far from being realized: in reality, despite the proclamation of the first sentence, there is little overlap between the first and third categories at the present time.

Keywords

Excitation Function Centrifugal Barrier Langevin Model Collision Chamber Flowing Afterglow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Branscomb, Is the literature worth reviewing?, Sci. Res. 3 (11), 49–56 (1968).Google Scholar
  2. 2.
    E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, in “Advances in Atomic and Molecular Physics” (D.R. Bates and I. Estermann, eds.), Vol. 5, pp. 1–56, Academic Press, New York (1969).Google Scholar
  3. 3.
    T.F. George and R.J. Suplinskas, Kinematic model for reaction. II. Ion-molecule reactions involving H2 and D2, J. Chem. Phys. 51, 3666–3670 (1969).Google Scholar
  4. 4.
    I. G. Csizmadia, J. C. Polanyi, A. C. Roach, and W. H. Wong, Distribution of reaction products (theory). VII. D+ + H2 → DH + H+ using an ab initio potential-energy surface, Can. J. Chem. 47, 4097–4099 (1969).Google Scholar
  5. 5.
    E.A. Gislason, B.H. Mahan, C.W. Tsao, and A.S. Werner, Evidence for long-lived collision complexes in ion-molecule reactions: DO2 + from O2 + and D2, J. Chem. Phys. 50, 5418–5419 (1969).Google Scholar
  6. 6.
    H. Pauly and J.P. Toennies, in “Advances in Atomic and Molecular Physics” (D.R. Bates and I. Estermann, eds.) Vol. 1, pp. 195–344, Academic Press, New York (1965).Google Scholar
  7. 7.
    V. Čermák and Z. Herman, Mass spectrometric study of the formation of N3 + and C2O+ ions, Collection Czech. Chem. Commun. 30, 1343–1357 (1965).Google Scholar
  8. 8.
    W.B. Maier II and R.F. Holland, Emission from metastable states in a nitrogen ion beam, J. Chem. Phys. 52, 2997–3001 (1970).Google Scholar
  9. 9.
    S. J. Wisniewski, R. P. Clow, and J. H. Futrell, On the competition between unimolecular dissociation and ion-molecule reaction of cis-2-butene molecular ions, J. Phys. Chem. 74, 2234–2235 (1970).Google Scholar
  10. 10.
    J.C. Light, J. Ross, and K.E. Schuler, in “Kinetic Processes in Gases and Plasmas” (A.R. Hochstim, ed.), pp. 281–320, Academic Press, New York (1969).Google Scholar
  11. 11.
    D.R. Herschbach, in “Advances in Chemical Physics” (J. Ross, ed.), Vol. 10, pp. 319–393, Interscience, New York (1966).Google Scholar
  12. 12.
    J. L.J. Rosenfeld and J. Ross, Calculation of chemical reaction probabilities from elastic scattering data, J. Chem. Phys. 44, 188–194 (1966).Google Scholar
  13. 13.
    R.J. Beuhler, Jr. and R.B. Bernstein, Crossed-beam study of the reactive asymmetry of oriented methyl iodide molecules with rubidium, J. Chem. Phys. 51, 5305–5315 (1969).Google Scholar
  14. 14.
    P.R. Brooks, Molecular beam reaction of K with oriented CF3I. Evidence for harpooning?, J. Chem. Phys. 50, 5031–5032 (1969).Google Scholar
  15. 15.
    E. F. Greene and A. Kuppermann, Chemical reaction cross sections and rate constants, J. Chem. Ed. 45, 361–369 (1968).Google Scholar
  16. 16.
    J.P. Toennies, Molecular beam investigations of bimolecular reactions, Ber. Bunsenges. Phys. Chem. 72, 927–949 (1968).Google Scholar
  17. 17.
    M. Menzinger and R. Wolfgang, The meaning and use of the Arrhenius activation energy, Angew. Chem. Internat. Edit. 8, 438–444 (1969).Google Scholar
  18. 18.
    J. I. Steinfeld and J. L. Kinsey, in “Progress in Reaction Kinetics” (G. Porter, ed), Vol. 5, pp. 1–28, Pergamon Press, Oxford (1970).Google Scholar
  19. 19.
    J. E. Jordan, E. A. Mason, and I. Amdur, in “Physical Methods in Chemistry” (A. Weissberger and B.W. Rossiter, eds.), Interscience, New York (in press).Google Scholar
  20. 20.
    L. A. Melton and R. G. Gordon, Extraction of reaction cross section from rate constant data: D + H2 → HD + H, J. Chem. Phys. 51, 5449–5457 (1969).Google Scholar
  21. 21.
    J.C. Light, Phase-space theory of chemical kinetics, J. Chem. Phys. 40, 3221–3229 (1964).Google Scholar
  22. 22.
    J.C. Light, Conversion of phenomenological to microscopic cross sections for ion-molecule reactions, J. Chem. Phys. 41, 586–587 (1964).Google Scholar
  23. 23.
    G. Gioumousis, Cross Sections and Rate Constants for Ion-Molecule Reactions, Lockheed Research Laboratory, Palo Alto, California, Report No. 2–12–66–4 (October 1966).Google Scholar
  24. 24.
    V. L. Talrose and E. L. Frankevich, Pulse method of determining the rate constants of ion-molecule reactions, Russian J. Phys. Chem. 34, 1275–1279 (1960).Google Scholar
  25. 25.
    C.W. Pyun, Nonequilibrium effects in free-radical recombination and ion-molecule reaction kinetics, J. Chem. Phys. 48, 1306–1311 (1968).Google Scholar
  26. 26.
    C. W. Pyun, Nonequilibrium effects in gas reactions, J. Chem. Phys. 50, 2782–2783 (1969).Google Scholar
  27. 27.
    I. Szabo, Consecutive ion-molecule reactions in ethylene investigated by means of positive ion-impact, Arkiv Fysik 33, 57–71 (1967).Google Scholar
  28. 28.
    P. Warneck, Studies of ion-neutral reactions by a photoionization mass-spectrometer technique. I, J. Chem. Phys. 46, 502–512 (1967).Google Scholar
  29. 29.
    L. W. Sieck, S.K. Searles, and P. Ausloos, High-pressure photoionization mass spectrometry. I. Unimolecular and bimolecular reactions of C4H8 + from cyclobutane, J. Am. Chem. Soc. 91, 7627–7634 (1969).Google Scholar
  30. 30.
    E.W. McDaniel, in “Methods of Experimental Physics” (B. Bederson and W. L. Fite, eds.), Vol. 7A, pp. 361–390, Academic Press, New York (1968).Google Scholar
  31. 31.
    C.F. Barnett and H.B. Gilbody, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, eds.), Vol. 7A, pp. 390–476, Academic Press, New York (1968).Google Scholar
  32. 32.
    E.W. McDaniel, V. Čermák, A. Dalgarno, E.E. Ferguson, and L. Friedman, “Ion-Molecule Reactions,” Wiley-Interscience, New York (1970).Google Scholar
  33. 33.
    C. F. Giese and W. B. Maier II, Energy dependence of cross sections for ion-molecule reactions. Transfer of hydrogen atoms and hydrogen ions, J. Chem. Phys. 39, 739–748 (1963).Google Scholar
  34. 34.
    M.J. Henchman, H. Otwinowska, and F.H. Field, in “Advances in Mass Spectrometry” (W.L. Mead, ed.), Vol. 3, pp. 359–375, Institute of Petroleum, London (1966).Google Scholar
  35. 35.
    L. Matus, I. Opauszky, D. Hyatt, A.J. Masson, K. Birkinshaw, and M. J. Henchman, Kinematic investigations of ion-neutral collision mechanisms at ~ 1 eV, Disc. Faraday Soc. 44, 146–156 (1967).Google Scholar
  36. 36.
    E.W. McDaniel, Possible sources of large error in determinations of ion-molecule reaction rates with drift tube-mass spectrometers, J. Chem. Phys. 52, 3931–3935 (1970).Google Scholar
  37. 37.
    D.W. Vance, Relative population of N+ and N2 + in a “mass-14” ion beam, J. Chem. Phys. 48, 1873–1874 (1968).Google Scholar
  38. 38.
    A.J. Masson, Ph.D. Thesis, Brandeis University (1971); A.J. Masson and M.J. Henchman, unpublished work.Google Scholar
  39. 39.
    K. R. Ryan and J. H. Futrell, Effect of translational energy on ion-molecule reaction rates. I, J. Chem. Phys. 42, 824–829 (1965).Google Scholar
  40. 40.
    J.H. Futrell, in “Advances in Mass Spectrometry” (W.L. Mead, ed.), Vol. 3, p. 432, Institute of Petroleum, London (1966).Google Scholar
  41. 41.
    H. Pauly and J. P. Toennies, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, ed.), Vol. 7A, pp. 227–341, Academic Press, New York (1968).Google Scholar
  42. 42.
    A.G. Harrison and J.J. Myher, Ion-molecule reactions in mixtures with D2 or CH4, J. Chem. Phys. 46, 3276–3277 (1967).Google Scholar
  43. 43.
    M.G. Holliday, J.T. Muckerman, and L. Friedman, Isotopic studies of the proton-hydrogen molecule reaction, J. Chem. Phys. 54, 1058–1072 (1971).Google Scholar
  44. 44.
    T.M. Miller, Ph.D. Thesis, Georgia Institute of Technology (1968).Google Scholar
  45. 45.
    J. Heimerl, R. Johnsen, and M. Biondi, Ion-molecule reactions, He+ + O2 and He+ + N2, at thermal energies and above, J. Chem. Phys. 51, 5041–5048 (1969).Google Scholar
  46. 46.
    P. J. Chantry, Doppler broadening in beam experiments, Bull. Am. Phys. Soc. 16, 212–213 (1971).Google Scholar
  47. 47.
    W.B. Maier II, Atom transfer in endothermic ion-molecule reactions, J. Chem. Phys. 46, 4991–4992 (1967).Google Scholar
  48. 48.
    D.G. Truhlar, Statistical phase-space theory of the reaction C+ + D2 including threshold behavior, J. Chem. Phys. 51, 4617–4623 (1969).Google Scholar
  49. 49.
    P. J. Chantry, Doppler broadening in beam experiments J. Chem. Phys. 55, 2746–2759 (1971).Google Scholar
  50. 50.
    E. Lindholm, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 1–19, American Chemical Society, Washington, D.C.(1966).Google Scholar
  51. 51.
    R. L. Champion and L. D. Doverspike, Charge transfer and dissociative charge transfer between rare-gas ions and molecular nitrogen, J. Chem. Phys. 49, 4321–4329 (1968).Google Scholar
  52. 52.
    A. J. Masson, K. Birkinshaw, and M. J. Henchman, Collision mechanism of a dissociative charge-transfer reaction at low energy, J. Chem. Phys. 50, 4112–4114 (1969).Google Scholar
  53. 53.
    R. S. Lehrle, J. C. Robb, and D. W. Thomas, A modified time-of-flight mass spectrometer for studying ion-molecule or neutral particle-molecule interactions, J. Sci. Instr. 39, 458–463 (1962).Google Scholar
  54. 54.
    J.B. Homer, R.S. Lehrle, J.C. Robb, and D.W. Thomas, Gas-phase ion-molecule interactions involving atom transfer; limitations of the orbiting theory in accounting for the variation of cross-section with energy, Nature 202, 795–797 (1964).Google Scholar
  55. 55.
    D. Hyatt and K. Lacmann, Chemical reaction kinematics. VIII. Cross sections of some D-atom transfer reactions in the energy range 1–100 eV, Z. Naturforsch. 23a, 2080–2083 (1968).Google Scholar
  56. 56.
    E. R. Wiener, G. R. Hertel, and W. S. Koski, Gas phase reactions between carbon tetrachloride and mass analyzed ions of nitrogen between 3 and 200 eV, J. Am. Chem. Soc., 86, 788–793 (1964).Google Scholar
  57. 57.
    G. R. Hertel and W. S. Koski, Ion-molecule reactions between rare gas ions and methane, J. Am. Chem. Soc. 87, 1686–1691 (1965).Google Scholar
  58. 58.
    M. A. Berta, B. Y. Ellis, and W. S. Koski, Reaction of HD+ with rare gases, J. Chem. Phys. 44, 4612–4615 (1966).Google Scholar
  59. 59.
    Z. Herman, J. Kerstetter, T. Rose, and R. Wolfgang, Crossed-beam studies of ion-molecule reaction mechanisms, Disc. Faraday Soc. 44, 123–136 (1967).Google Scholar
  60. 60.
    V. Čermák and Z. Herman, Molecular dissociation in charge-transfer reactions, Nucleonics 19(9), 106–114 (1961).Google Scholar
  61. 61.
    A. J. Masson, P. F. Fennelly, and M. J. Henchman, in “Advances in Mass Spectrometry,” Vol. 5, pp. 207–212, Institute of Petroleum, London (1971).Google Scholar
  62. 62.
    R. L. Wolfgang, private communication.Google Scholar
  63. 63.
    L. Friedman, in “Annual Review of Physical Chemistry” (H.L. Eyring, ed.), Vol. 19, pp. 273–300, Annual Reviews, Palo Alto, Calif. (1968).Google Scholar
  64. 64.
    W. R. Gentry, E. A. Gislason, B. H. Mahan, and C. W. Tsao, Dynamics of the reaction of N2 + with H2, D2, and HD, J. Chem. Phys. 49, 3058–3070 (1968);Google Scholar
  65. 64a.
    E. A. Gislason, B.H. Mahan, C. W. Tsao, and A.S. Werner, Dynamics of the reactions of N2 + with CH4 and CD4, J. Chem. Phys. 50, 142–150 (1969).Google Scholar
  66. 65.
    J. F. Paulson, F. Dale, and S. A. Studniarz, Study of ion-neutral reactions with a time-of-flight mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 5, 113–126 (1970).Google Scholar
  67. 66.
    E. Teloy and D. Gerlich, private communication; D. Gerlich, Diplomarbeit Thesis, University of Freiburg (1971).Google Scholar
  68. 67.
    W. Paul and H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld, Z. Naturforsch. 8a, 448–450 (1953).Google Scholar
  69. 68.
    C.F. Giese and W.B. Maier II, Dissociative ionization of CO by ion impact, J. Chem. Phys. 39, 197–200 (1963).Google Scholar
  70. 69.
    B. R. Turner, M. A. Fineman, and R. F. Stebbings, Crossed-beam investigation of N2D+ production in N2 +-D2 collisions, J. Chem. Phys. 42, 4088–4096 (1965).Google Scholar
  71. 70.
    J. Colwell and M.A. Fineman, Calculation of the total cross section from angular measurements in crossed-beam experiments, J. Chem. Phys. 42, 4097–4100 (1965).Google Scholar
  72. 71.
    R.H. Neynaber, in “Advances in Atomic and Molecular Physics” (D. R. Bates and I. Estermann, eds.), Vol. 5, pp. 57–108, Academic Press, New York (1969).Google Scholar
  73. 72.
    V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Resonance charge exchange of protons and deuterons at low energies, Soviet Physics—JETP 25, 777–782 (1967).Google Scholar
  74. 73.
    V.A. Belyaev, B.G. Brezhnev, and E. M. Erastov, Resonant-charge transfer of low-energy carbon and nitrogen ions, Soviet PhysicsJETP 27, 924–926 (1968).Google Scholar
  75. 74.
    R. H. Neynaber, S. M. Trujillo, and E. W. Rothe, Symmetric resonance charge transfer in Ar from 0.1–20 eV using merging beams, Phys. Rev. 157, 101–102 (1967).Google Scholar
  76. 75.
    R.H. Neynaber and S.M. Trujillo, Study of H2 + + H2 → H3 + + H using merging beams, Phys. Rev. 167, 63–66 (1968) [Erratum: Phys. Rev. 171, 282 (1968)].Google Scholar
  77. 76.
    P. K. Rol, Low-Energy Interaction Studies by a Merging Beams Technique, Space Science Laboratory, General Dynamics/Convair, Report AFCRL-69–0324 (GDC-DBE69–006) (1970).Google Scholar
  78. 77.
    P. K. Rol and E. A. Entemann, Low-Energy Interaction Studies by a Merging Beams Technique, Space Science Laboratory, General Dynamics/Convair, Report AFCRL-69--0022 (GDC-DBE69–002) (January 1969).Google Scholar
  79. 78.
    P.K. Rol and E.A. Entemann, NaO+ production from Na and O2 + in merged beams, J. Chem. Phys. 49, 1430–1431 (1968).Google Scholar
  80. 79.
    T. W. Shannon, F. Meyer, and A. G. Harrison, A pulsed ion source for the study of uni-molecular and bimolecular reactions of gas-phase ions, Can. J. Chem. 43, 159–174 (1965).Google Scholar
  81. 80.
    S. K. Gupta, E. G. Jones, A. G. Harrison, and J. J. Myher, Reactions of thermal energy ions. VI. Hydrogen-transfer ion-molecule reactions involving polar molecules, Can. J. Chem. 45, 3107–3117 (1967).Google Scholar
  82. 81.
    K. Birkinshaw, A.J. Masson, D. Hyatt, L. Matus, I. Opauszky, and M.J. Henchman, in “Advances in Mass Spectrometry” (E. Kendrick, ed.), Vol. 4, pp. 379–390, Institute of Petroleum, London (1968).Google Scholar
  83. 82.
    M.S.B. Munson, J.L. Franklin, and F.H. Field, A mass spectrometric study of homo-nuclear and heteronuclear rare gas molecule ions, J. Phys. Chem. 67, 1542–1548 (1963).Google Scholar
  84. 83.
    L.M. Draper, Ph.D. Thesis, University of New South Wales (1964).Google Scholar
  85. 84.
    V.L. Talrose and A.K. Lyubimova, Secondary processes in a mass spectrometer ion source, Dokl. Akad. Nauk. SSSR 86, 909–912 (1952).Google Scholar
  86. 85.
    F.H. Field and J.L. Franklin, Reactions of gaseous ions. X. Ionic reactions in xenon-methane mixtures, J. Am. Chem. Soc. 83, 4509–4515 (1961).Google Scholar
  87. 86.
    M.J. Henchman, Ion-molecule reactions and reactions in crossed molecular beams, Ann. Rep. Chem. Soc. 62, 39–62 (1965).Google Scholar
  88. 87.
    D. P. Stevenson, in “Mass Spectrometry” (C. A. McDowell, ed.), pp. 589–615, McGraw-Hill, New York (1963).Google Scholar
  89. 88.
    W.A. Chupka and M.E. Russell, Photoionization study of ion-molecule reactions in mixtures of hydrogen and rare gases, J. Chem. Phys. 49, 5426–5437 (1968).Google Scholar
  90. 89.
    J. C. Light and J. Lin, Phase-space theory of chemical kinetics.II. Ion-molecule reactions, J. Chem. Phys. 43, 3209–3219 (1965).Google Scholar
  91. 90.
    K. R. Ryan and J. H. Futrell, Effect of translational energy on ion-molecule reaction rates. II, J. Chem. Phys. 43, 3009–3014 (1965).Google Scholar
  92. 91.
    K. R. Ryan, J. H. Futrell, and C. D. Miller, Method for studying low energy ion-molecule reactions using monoenergetic ions, Rev. Sci. Instr. 37, 107–110 (1966).Google Scholar
  93. 92.
    J.H. Futrell and T.O. Tiernan, in “Fundamental Processes in Radiation Chemistry,” (P.J. Ausloos, ed.), pp. 171–280, Interscience, New York (1968).Google Scholar
  94. 93.
    D.J. Hyatt, E.A. Dodman, and M.J. Henchman, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 131–149, American Chemical Society, Washington, D. C. (1966).Google Scholar
  95. 94.
    R. A. Challinor and R. A. Duncan, The effects of thermal energy and ion-removal time on the “pulsed source” method for mass spectrometer investigations of ion-molecule reactions, Austr. J. Phys. 20, 633–642 (1967).Google Scholar
  96. 95.
    K. R. Ryan, Ionic collision processes in gaseous nitrogen, J. Chem. Phys. 51, 570–576 (1969).Google Scholar
  97. 96.
    J.S. Dahler, J.L. Franklin, M.S.B. Munson, and F.H. Field, Rare-gas molecule-ion formation by mass spectrometry. Kinetics of Ar2 +, Ne2 +, and He2 + formation by second- and third-order processes, J. Chem. Phys. 36, 3332–3344 (1962).Google Scholar
  98. 97.
    F.W. Lampe, J.L. Franklin, and F.H. Field, in “Progress in Reactions Kinetics” (G. Porter, ed.), Vol. 1. pp. 67–103, Pergamon Press, New York (1961).Google Scholar
  99. 98.
    G.G. Meisels and H.F. Tibbals, Higher order ion-molecule reactions, Part I. Theoretical basis, J. Phys. Chem. 72, 3746–3753 (1968).Google Scholar
  100. 99.
    I. Szabo, Theoretical analysis of consecutive ion-molecule reactions. I. The mechanisms in a tandem mass spectrometer of perpendicular type. II. The mechanisms in a tandem mass spectrometer of longitudinal type, Int. J. Mass Spectrom. Ion Phys. 3, 103–129, 169–188 (1969).Google Scholar
  101. 100.
    P. Warneck, Studies of ion-neutral reactions by a photoionization mass-spectrometer technique. II. Charge-transfer reactions of argon ions at near-thermal energies, J. Chem. Phys. 46, 513–519 (1967).Google Scholar
  102. 101.
    C.J. Ogle, Ph.D. Thesis, University of Leeds, 1968; M.J. Henchman and C.J. Ogle, unpublished work.Google Scholar
  103. 102.
    J. F. Paulson, Low energy charge exchange and ion-molecule reactions, Ann. Geophys. 20,75–87 (1964).Google Scholar
  104. 103.
    A. G. Harrison, J. J. Myher, and J. C. J. Thynne, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 150–166, American Chemical Society, Washington, D.C. (1966).Google Scholar
  105. 104.
    A.A. Herod, A.G. Harrison, R.M. O’Malley, A.T. Ferrer-Correia, and K. R. Jennings, A comparison of the zero-field pulsing technique and the ICR technique for studying ion-molecule reactions, J. Phys. Chem. 74, 2720–2722 (1970).Google Scholar
  106. 105.
    J. Bracher, H. Ehrhardt, R. Fuchs, O. Osberghaus, and R. Taubert, in “Advances in Mass Spectrometry” (R.M. Elliott, ed.), Vol. 2, pp. 285–295, Pergamon Press, Oxford (1963).Google Scholar
  107. 106.
    T.H. McGee and M.J. Henchman, unpublished work.Google Scholar
  108. 107.
    G.V. Karachevtsev, M.I. Markin, and V.L. Talrose, Mass-spectrometric impulse method of investigating elementary processes of charge exchange of thermal ions in molecules, Kinetics Catalysis 5, 331–339 (1964).Google Scholar
  109. 108.
    B.G. Reuben, A. Lifshitz, and C. Lifshitz, Calculations of rate constants for ion-molecule reactions in a pulsed-source mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 2, 385–390 (1969).Google Scholar
  110. 109.
    D. A. Durden, P. Kebarle, and A. Good, Thermal ion-molecule reaction rate constants at pressures up to 10 Torr with a pulsed mass spectrometer. Reactions in methane, krypton, and oxygen, J. Chem. Phys. 50, 805–813 (1969).Google Scholar
  111. 110.
    T. H. McGee, P. F. Fennelly, and M.J. Henchman, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 321–324, M.I.T. Press, Cambridge (1969).Google Scholar
  112. 111.
    R. Johnsen, H.L. Brown, and M.A. Biondi, Ion-molecule reactions involving N2 +, N+, O2 +, and O+ ions from 300°K to ~ 1 eV, J. Chem. Phys. 52, 5080–5084 (1970).Google Scholar
  113. 112.
    J.T. Moseley, R.M. Snuggs, D.W. Martin, and E.W. McDaniel, Mobilities, diffusion coefficients, and reaction rates of mass-identified nitrogen ions in nitrogen, Phys. Rev. 178, 240–248 (1969).Google Scholar
  114. 113.
    M.T. Bowers, D. D. Elleman, and J. L. Beauchamp, Ion cyclotron resonance of olefins. I. A study of the ion-molecule reactions in electron-impacted ethylene, J. Phys. Chem. 72, 3599–3612 (1968).Google Scholar
  115. 114.
    S. E. Buttrill, Jr., Measurement of ion-molecule reaction rate constants using ion cyclotron resonance, J. Chem. Phys. 50, 4125–4132 (1969).Google Scholar
  116. 115.
    R. P. Clow and J. H. Futrell, Ion-cyclotron resonance study of the kinetic energy dependence of ion-molecule reaction rates. I. Methane, hydrogen, and rare gas-hydrogen systems, Int. J. Mass Spectrom. Ion Phys. 4, 165–179 (1970).Google Scholar
  117. 116.
    J. L. Beauchamp and S. E. Buttrill Jr., Proton affinities of H2S and H2O, J. Chem. Phys. 48, 1783–1789 (1968).Google Scholar
  118. 117.
    L. R. Anders, Study of the energetics of ion-molecule reactions by pulsed ion cyclotron double resonance, J. Phys. Chem. 73, 469–470 (1969).Google Scholar
  119. 118.
    R. C. Dunbar, Energy dependence of methanol proton transfer reaction rate, J. Chem. Phys. 52, 2780–2781 (1970).Google Scholar
  120. 119.
    D. Wobschall, R. A. Fluegge, and J. R. Graham, Jr., Collision cross sections of hydrogen and other ions as determined by ion cyclotron resonance, J. Chem. Phys. 47, 4091–4094 (1967).Google Scholar
  121. 120.
    J. L. Beauchamp, Theory of collision-broadened ion cyclotron resonance spectra, J. Chem. Phys. 46, 1231–1243 (1967).Google Scholar
  122. 121.
    J.L. Beauchamp and J.T. Armstrong, An ion ejection technique for the study of ion-molecule reactions with ion cyclotron resonance spectroscopy, Rev. Sci. Instr. 40, 123–128 (1969).Google Scholar
  123. 122.
    J.H. Futrell, private communication.Google Scholar
  124. 123.
    M.T. Bowers and D.D. Elleman, Kinetic analysis of the concurrent ion-molecule reactions in mixtures of argon and nitrogen with H2, D2, and HD utilizing ion-ejection-ion-cyclotron-resonance techniques, J. Chem. Phys. 51, 4606–4617 (1969).Google Scholar
  125. 124.
    J. King Jr., and D. D. Elleman, Charge-exchange reactions in xenon-methane mixtures, J. Chem. Phys. 48, 4803–4804 (1968).Google Scholar
  126. 125.
    R. P. Clow and J. H. Futrell, Observation of charge exchange in xenon-methane mixtures by ion-cyclotron double resonance, J. Chem. Phys. 50, 5041–5042 (1969).Google Scholar
  127. 126.
    A. G. Marshall and S. E. Buttrill Jr., Calculation of ion-molecule reaction rate constants from ion cyclotron resonance spectra: methyl fluoride, J. Chem. Phys. 52, 2752–2759 (1970).Google Scholar
  128. 127.
    M.T. Bowers, D.D. Elleman, and J. King Jr., Kinetic analysis of the ion-molecule reactions in nitrogen-hydrogen mixtures using ion cyclotron resonance, J. Chem. Phys. 50, 1840–1845 (1969).Google Scholar
  129. 128.
    W.L. Fite, in “Methods of Experimental Physics” (B. Bederson and W.L. Fite, eds.), Vol. 7B, pp. 124–139, Academic Press, New York (1968).Google Scholar
  130. 129.
    W.L. Fite, Positive ion reactions, Can. J. Chem. 47, 1797–1807 (1969).Google Scholar
  131. 130.
    W. C. Lineberger and L. J. Puckett, Positive ions in nitric oxide afterglows, Phys. Rev. 186, 116–127 (1969).Google Scholar
  132. 131.
    W.C. Lineberger and L.J. Puckett, Hydrated positive ions in nitric-oxide-water afterglows, Phys. Rev. 187, 286–291 (1969).Google Scholar
  133. 132.
    L.J. Puckett and W.C. Lineberger, Negative-ion reactions in NO-H2O mixtures, Phys. Rev. A 1, 1635–1641 (1970).Google Scholar
  134. 133.
    N.G. Adams, D. K. Bohme, D. B. Dunkin, and F.C. Fehsenfeld, Temperature dependences of the rate coefficients for the reactions of Ar+ with O2, H2, and D2, J. Chem. Phys. 52, 1951–1955 (1970).Google Scholar
  135. 134.
    F.C. Fehsenfeld, A.L. Schmeltekopf, D.B. Dunkin, and E.E. Ferguson, Compilation of Reaction Rate Constants Measured in the ESSA Flowing Afterglow System to August 1969, ESSA Technical Report ERL 135-AL 3 (September 1969).Google Scholar
  136. 135.
    H. I. Schiff, A. E. Roche, F. C. Fehsenfeld, and D. K. Bohme, in “Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions” (L. Branscomb, ed.), pp. 984–986, North-Holland, Amsterdam (1971).Google Scholar
  137. 136.
    D. K. Bohme and L. B. Young, Gas-phase reactions of oxide radical ion and hydroxide ion with simple olefins and of carbanions with oxygen, J. Am. Chem. Soc. 92, 3301–3309 (1970).Google Scholar
  138. 137.
    R. C. Bolden, R. S. Hemsworth, M. J. Shaw, and N. D. Twiddy, Measurement of thermal-energy ion-neutral reaction rate coefficients for rare-gas ions, J. Phys. B. 3, 45–60 (1970).Google Scholar
  139. 138.
    A.L. Farragher, Ion-molecule reaction rate studies in a flowing afterglow system, Trans. Faraday Soc. 66, 1411–1422 (1970).Google Scholar
  140. 139.
    R.C. Bolden, R.S. Hemsworth, M.J. Shaw, and N.D. Twiddy, The measurement of penning ionization cross sections for helium 2 3S metastables using a steady-state flowing afterglow method, J. Phys. B. 3, 61–71 (1970).Google Scholar
  141. 140.
    W.A. Chupka, M.E. Russell, and K. Refaey, Ion-molecule and chemi-ionization reactions in H2 by photoionization, J. Chem. Phys. 48, 1518–1527 (1968).Google Scholar
  142. 141.
    N. Sbar and J. Dubrin, Study of the rotational kinetic energy dependence of the reaction cross section: Ar+ + H2 → ArH+ + H, J. Chem. Phys. 53, 842–843 (1970).Google Scholar
  143. 142.
    F.C. Fehsenfeld, D.L. Albritton, J.A. Burt and H.I. Schiff, Associative-detachment reactions of CT and O2 - by O2(1Δ g), Can. J. Chem. 47, 1793–1795 (1969).Google Scholar
  144. 143.
    M. J. Henchman, D. Hyatt, and L. Matus, in “Proceedings of the XIV Colloquium Spec-troscopicum Internationale,” pp. 1535–1539, Adam Hilger, London (1967).Google Scholar
  145. 144.
    L. Matus, D.J. Hyatt, and M.J. Henchman, Collision mechanisms of ion-molecule reactions at energies of 1 eV, J. Chem. Phys. 46, 2439–2440 (1967).Google Scholar
  146. 145.
    C.W. Hand and H. von Weyssenhoff, Ion-molecule reactions studied by time-of-flight mass spectrometry. II. Reactions in CO-D2 and CH4-D2 mixtures, Can. J. Chem. 42, 2385–2392 (1964).Google Scholar
  147. 146.
    J.L. Franklin, Y. Wada, P. Natalis, and P.M. Hierl, Ion-molecule reactions in acetonitrile and propionitrile, J. Phys. Chem. 70, 2353–2361 (1966).Google Scholar
  148. 147.
    K. Birkinshaw, Ph.D. Thesis, University of Leeds (1968); K. Birkinshaw and M.J. Henchman, unpublished results.Google Scholar
  149. 148.
    R.A. Fluegge, Ion-molecule reactions in alpha-particle-irradiated methane and water vapor, J. Chem. Phys. 50, 4373–4380 (1969).Google Scholar
  150. 149.
    C. Lifshitz and B.G. Reuben, Ion-molecule reactions in aromatic systems. I. Secondary ions and reaction rates in benzene, J. Chem. Phys. 50, 951–960 (1969).Google Scholar
  151. 150.
    M. Inoue and S. Wexler, Isotopic exchange in CH4-D2 and CD4-H2 mixtures studied by ion cyclotron resonance spectroscopy. The mechanism of self-induced labeling of methane by tritium, J. Am. Chem. Soc. 91, 5730–5740 (1969).Google Scholar
  152. 151.
    D. Holtz, J. L. Beauchamp, and J. R. Eyler, Acidity, basicity and ion-molecule reactions of phosphine in the gas phase by ion cyclotron resonance spectroscopy, J. Am. Chem. Soc. 92, 7045–7055 (1970).Google Scholar
  153. 152.
    K. R. Ryan, Ionic collision processes in water vapor, J. Chem. Phys. 52, 6009–6016 (1970).Google Scholar
  154. 153.
    F. H. Field, J. L. Franklin, and F. W. Lampe, Reactions of gaseous ions. I. Methane and ethylene, J. Am. Chem. Soc. 79, 2419–2429 (1957).Google Scholar
  155. 154.
    T. W. Martin and C. E. Melton, Hydrogen atom abstraction reactions by cyanide ion-radicals, J. Chem. Phys. 32, 700–704 (1960).Google Scholar
  156. 155.
    A. Giardini-Guidoni and L. Friedman, Energy transfer in ion-molecule reactions in the methane system, J. Chem. Phys. 45, 937–943 (1966).Google Scholar
  157. 156.
    W. Poschenrieder and P. Warneck, Gas analysis by photo-ionization mass spectrometry, J. Appl. Phys. 37, 2812–2820 (1966).Google Scholar
  158. 157.
    J. H. Futrell, T. O. Tiernan, F. P. Abramson, and C. D. Miller, Modification of a time-of-flight mass spectrometer for investigation of ion-molecule reactions at elevated pressures, Rev. Sci. Instr. 39, 340–345 (1968).Google Scholar
  159. 158.
    S. Wexler and N. Jesse, Consecutive ion-molecule reactions in methane, J. Am. Chem. Soc. 84, 3425–3432 (1962).Google Scholar
  160. 159.
    F.H. Field, J.L. Franklin, and M.S.B. Munson, Reactions of gaseous ions. XII. High pressure mass spectrometric study of methane, J. Am. Chem. Soc. 85, 3575–3583 (1963).Google Scholar
  161. 160.
    G.A.W. Derwish, A. Galli, A. Giardini-Guidoni, and G.G. Volpi, Ion-molecule reactions in methane and in ethane, J. Chem. Phys. 40, 5–12 (1964).Google Scholar
  162. 161.
    S. Wexler, A. Lifshitz, and A. Quattrochi, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 193–209, American Chemical Society, Washington, D.C. (1966).Google Scholar
  163. 162.
    S.O. Colgate and T.W. Schmidt, Energy-dependence measurement of the CH4 + + CH4 = CH3 + CH5 + reaction cross section, J. Chem. Phys. 45, 367–369 (1966).Google Scholar
  164. 163.
    F. P. Abramson and J. H. Futrell, On the reaction of CH4 + with CD4, J. Chem. Phys. 46, 3264–3266 (1967).Google Scholar
  165. 164.
    C.E. Melton and W.H. Hamill, Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions, J. Chem. Phys. 41, 1469–1474 (1964).Google Scholar
  166. 165.
    W. A. Chupka and J. Berkowitz, Photoionization of methane: ionization potential and proton affinity of CH4, J. Chem. Phys. 54, 4256–4259 (1971).Google Scholar
  167. 166.
    H. Gutbier, Massenspecktrometrische Untersuchung der reaktion X+ + H2 → HX+ + H, Z. Naturforsch. 12a, 499–507 (1957).Google Scholar
  168. 167.
    G. Gioumousis and D.P. Stevenson, Reactions of gaseous molecule ions with gaseous molecules. V. Theory, J. Chem. Phys. 29, 294–299 (1958).Google Scholar
  169. 168.
    Z. Herman and V. Čermák, Mass spectrometric investigation of the reactions of ions and excited neutral particles in mixtures containing mercury vapour, Collection Czech. Chem. Commun. 28, 799–807 (1963).Google Scholar
  170. 169.
    J. H. Green and D. M. Pinkerton, Hydride ion transfer and radiolysis reactions in pentane and isopentane, J. Phys. Chem. 68, 1107–1111 (1964).Google Scholar
  171. 170.
    V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G.G. Volpi, Ion-molecule reactions in hydrogen-rare-gas mixtures, J. Chem. Phys. 43, 1969–1973 (1965).Google Scholar
  172. 171.
    J. Sayers and D. Smith, Ion and charge exchange reactions involving atmospheric gases, Disc. Faraday Soc. 37, 167–175 (1964).Google Scholar
  173. 172.
    D.B. Dunkin, F.C. Fehsenfeld, A.L. Schmeltekopf, and E.E. Ferguson, Ion-molecule reaction studies from 300° to 600°K in a temperature-controlled flowing afterglow system, J. Chem. Phys. 49, 1365–1371 (1968).Google Scholar
  174. 173.
    W.B. Maier II, Reactions of He+ with N2 and O2 in the upper atmosphere, Planetary Space Sci. 16, 477–493 (1968).Google Scholar
  175. 174.
    B. Ziegler, Der Wirkungsquerschnitt sehr langsamer ionen, Z. Physik 136, 108–118 (1953).Google Scholar
  176. 175.
    W. H. Cramer, Elastic and ineleastic scattering of low-velocity ions: Ne+ in A, A+ in Ne, and A+ in A, J. Chem. Phys. 30, 641–642 (1959).Google Scholar
  177. 176.
    B. J. Nichols and F. C. Witteborn, Measurements of Resonant Charge Exchange Cross Sections in Nitrogen and Argon between 0.5 and 17 eV, NASA Technical Note NASA TN D-3265 (February 1966).Google Scholar
  178. 177.
    P. Mahadevan and G. D. Magnuson, Low-energy (1- to 100-eV) charge-transfer cross-section measurements for noble-gas-ion collisions with gases, Phys. Rev. 171, 103–109 (1968)Google Scholar
  179. 178.
    I. Popescu Iovitsu and N. Ionescu-Pallas, Resonant charge-exchange and the kinetics of ions, Soviet Phys.-Tech. Phys. 4, 781–791 (1960).Google Scholar
  180. 179.
    D. Rapp and W. E. Francis, Charge exchange between gaseous ions and atoms, J. Chem. Phys. 37, 2631–2645 (1962).Google Scholar
  181. 180.
    R. M. Snuggs, D. J. Volz, I. R. Gatland, J. H. Schummers, D. W. Martin, and E. W. McDaniel, Ion-molecule reactions between O- and O2 at thermal energies and above, Phys. Rev. A 3, 487–493 (1971).Google Scholar
  182. 181.
    B. G. Reuben and L. Friedman, Isotopic hydrogen-ion-molecule reactions, J. Chem. Phys. 37, 1636–1642 (1962).Google Scholar
  183. 182.
    J. J. Leventhal and L. Friedman, Diatomic-ion-molecule reactions: N2 +-N2, CO+ — CO, and O2 + — O2, J. Chem. Phys. 46, 997–1005 (1967).Google Scholar
  184. 183.
    W.B. Maier II. Is N3 produced in reactions between N2 + and N2?, J. Chem. Phys. 47, 859–860 (1967).Google Scholar
  185. 184.
    S. E. Buttrill, Jr., Calculation of ion-molecule reaction product distributions using the quasiequilibrium theory of mass spectra, J. Chem. Phys. 52, 6174–6183 (1970).Google Scholar
  186. 185.
    J. C. Light, Statistical theory of bimolecular exchange reactions, Disc. Faraday Soc. 44, 14–29 (1967).Google Scholar
  187. 186.
    D. K. Bohme, J. B. Hasted, and P. P. Ong, Calculation of interchange reaction rates by a “nearest resonance” method, J. Phys. B 1, 879–892 (1968).Google Scholar
  188. 187.
    J. J. Kaufman and W. S. Koski, Theoretical justification of the apparently anomalous low-energy behavior of some ion-molecule reactions, J. Chem. Phys. 50, 1942–1945 (1969).Google Scholar
  189. 188.
    T. F. O’Malley, Simple model for high energy reaction of O+ ions with N2, J. Chem. Phys. 52, 3269–3277 (1970).Google Scholar
  190. 189.
    E. E. Nikitin, in “Chemische Elementarprozesse” (H. Hartmann, ed.), pp. 43–77, Springer-Verlag, Berlin (1968).Google Scholar
  191. 190.
    J. C. Light and J. Horrocks, Molecular rearrangement collisions at high impact energies, Proc. Phys. Soc. 84, 527–530 (1964).Google Scholar
  192. 191.
    A. Henglein, in “Molecular Beams and Reaction Kinetics” (Ch. Schlier, ed.), pp. 139–183, Academic Press, New York (1970).Google Scholar
  193. 192.
    D. R. Bates, C. J. Cook, and F. J. Smith, Classical theory of ion-molecule rearrangement collisions at high impact energies, Proc. Phys. Soc. 83, 49–57 (1964).Google Scholar
  194. 193.
    G. K. Ivanov and Yu. S. Sayasov, The theory of direct atom-molecule reactions, Part I, Theor. Exp. Chem. 3, 95–101 (1967).Google Scholar
  195. 194.
    V.L. Talrose, Ion-molecular reactions in gases, Pure Appl. Chem. 5, 455–486 (1962).Google Scholar
  196. 195.
    V. L. Talrose and G. V. Karachevtsev, in “Advances in Mass Spectrometry” (W. L. Mead, ed.), Vol. 3, pp. 211–233, Institute of Petroleum, London (1966).Google Scholar
  197. 196.
    A. Henglein, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P.J. Ausloos, ed.), pp. 63–79, American Chemical Society, Washington, D.C. (1966).Google Scholar
  198. 197.
    J. H. Futrell and F. P. Abramson, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 107–130, American Chemical Society, Washington, D. C. (1966).Google Scholar
  199. 198.
    F. A. Wolf and B. R. Turner, Energy dependence of charge-transfer reactions in the thermal and low-electron-volt region, J. Chem. Phys. 48, 4226–4233 (1968).Google Scholar
  200. 199.
    R. W. Rozett and W. S. Koski, Helium ion-hydrogen reactions, J. Chem. Phys. 48, 533–534 (1968).Google Scholar
  201. 200.
    J. J. Leventhal, T. F. Moran, and L. Friedman, Molecular resonant charge-transfer proccesses; H2 + — H2 and N2 + — N2, J. Chem. Phys. 46, 4666–4672 (1967).Google Scholar
  202. 201.
    J.C. Light and S. Chan, Isotopic distributions in exothermic ion-molecule reactions. A simple model, J. Chem. Phys. 51, 1008–1015 (1969).Google Scholar
  203. 202.
    A. Ding, A. Henglein, and K. Lacmann, Chemische reaktionskinematik. VI. Komplex- und stripping-mechanismus der reaktion CD4 + + CD4 → CD5 + + CD3, Z. Naturforsch. 23a, 779–780 (1968).Google Scholar
  204. 203.
    E. Vogt and G. H. Wannier, Scattering of ions by polarization forces, Phys. Rev. 95, 1190–1198 (1954).Google Scholar
  205. 204.
    J. V. Dugan Jr. and J. L. Magee, Capture collisions between ions and polar molecules, J. Chem. Phys. 47, 3103–3112 (1967).Google Scholar
  206. 205.
    E. W. McDaniel, “Collision Phenomena in Ionized Gases,” John Wiley and Sons, New York (1964).Google Scholar
  207. 206.
    J. V. Dugan Jr., J. H. Rice, and J. L. Magee, On the nature of ion-molecule collisions, Chem. Phys. Letters 2, 219–222 (1968).Google Scholar
  208. 207.
    R.C.C. Lao, R.W. Rozett, and W.S. Koski, Ion-molecule reactions of C+ with N2 and O2, J. Chem. Phys. 49, 4202–4209 (1968).Google Scholar
  209. 208.
    G. R. North and J. J. Leventhal, Two-channel model for electron transfer in ion-molecule collisions, J. Chem. Phys. 51, 4236–4237 (1969).Google Scholar
  210. 209.
    N. Boelrijk and W. H. Hamill, Effects of relative velocity upon gaseous ion-molecule reactions; charge transfer to the neopentane molecule, J. Am. Chem. Soc. 84, 730–742 (1962).Google Scholar
  211. 210.
    A. MacKenzie Peers, The hard-sphere correction for ion-molecule collisions, Int. J. Mass. Spectrom. Ion Phys. 3, 99–102 (1969).Google Scholar
  212. 211.
    A. Jacobson, T. H. McGee, and M. J. Henchman, unpublished results.Google Scholar
  213. 212.
    J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl, and F.H. Field, “Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions,” Nat. Stand. Ref. Data Ser., Nat. Bur. Stand (U.S.) Vol. 26, U.S. Dept. of Commerce (1969).Google Scholar
  214. 213.
    I. G. Csizmadia, R. E. Kari, J. C. Polanyi, A. C. Roach, and M. A. Robb, Ab initio SCF-MO-CI calculations for H-, H2, and H3 + using Gaussian basis sets, J. Chem. Phys. 52, 6205–6211 (1970).Google Scholar
  215. 214.
    J. D. Payzant and P. Kebarle, Clustering equilibrium N2 + + 2N2 = N4 + + N2 and the bond dissociation energy of N4 +, J. Chem. Phys. 53, 4723–4724 (1970).Google Scholar
  216. 215.
    F. H. Field and D. P. Beggs, Reversible reactions of gaseous ions. III. Studies with methane at 0.1–1.0 Torr and 77–300°K, J. Am. Chem. Soc. 93, 1585–1591 (1971).Google Scholar
  217. 216.
    W.A. Lester, Jr., Interaction potential between Li+ and H2. I. Region appropriate for rotational excitation, J. Chem. Phys. 53, 1511–1515 (1970).Google Scholar
  218. 217.
    T. L. Gilbert and A. C. Wahl, Single-configuration wave functions and potential curves for low-lying states of He2 +, Ne2 +, Ar2 +, F2 -, Cl2 - and the ground states of Cl2, J. Chem. Phys. 55, 5247–5261 (1971).Google Scholar
  219. 218.
    M. Krauss, Compendium of ab initio Calculations of Molecular Energies and Properties, NBS Technical Note 438, U. S. Dept. of Commerce (December 1967).Google Scholar
  220. 219.
    C. F. Giese, in “Advances in Mass Spectrometry” (W. L. Mead, ed.), Vol. 3, pp. 321–330, Institute of Petroleum, London (1966).Google Scholar
  221. 220.
    J. B. Hasted, in “Advances in Atomic and Molecular Physics” (D. R. Bates and I. Estermann, ed.), Vol. 4, pp. 237–266, Academic Press, New York (1968).Google Scholar
  222. 221.
    E. F. Greene and J. Ross, Molecular beams and a chemical reaction, Science 159, 587–595 (1968).Google Scholar
  223. 222.
    G. H. Dunn, Franck-Condon factors for the ionization of H2 and D2, J. Chem. Phys. 44, 2592–2594 (1966).Google Scholar
  224. 223.
    D.P. Ridge and J.L. Beauchamp, Analysis of collision-broadened ion cyclotron resonance lineshapes: ions in methane. Cited in Ref. (321).Google Scholar
  225. 224.
    R. C. Dunbar, Energy dependence of ion-molecule reactions, J. Chem. Phys. 47, 5445–5446 (1967).Google Scholar
  226. 225.
    E. E. Ferguson, in “Advances in Electronics and Electron Physics” (L. Marton, ed.), Vol. 24, pp. 1–50, Academic Press, New York (1968).Google Scholar
  227. 226.
    C. Lifshitz and R. Grajower, Electron transfer reactions between polyatomic negative molecule-ions and neutral molecules at thermal energies, Int. J. Mass Spectrom. Ion Phys. 3, App. 5–8 (1969).Google Scholar
  228. 227.
    H. M. Rosenstock, C. R. Mueller, M. B. Wallenstein, M. L. Vestal, A. Tory, D. Rivers, and W. H. Johnston, Ion-Molecule Reactions, Report # JLI-650–3–7, U. S. Dept. of Commerce (October 1959).Google Scholar
  229. 228.
    D. R. Herschbach, unpublished results.Google Scholar
  230. 229.
    C. F. Giese, in “Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 20–27, American Chemical Society, Washington, D. C. (1966).Google Scholar
  231. 230.
    C. F. Giese, in “Advances in Chemical Physics” (J. Ross, ed.), Vol. 10, pp. 247–273, Interscience, New York (1966).Google Scholar
  232. 231.
    J. Schaefer and J. M. S. Henis, Electron density rearrangement description of ion-molecule reactions, J. Chem. Phys. 49, 5377–5381 (1968).Google Scholar
  233. 232.
    A. L. Schmeltekopf, F. C. Fehsenfeld, and E. E. Ferguson, Laboratory measurement of the rate constant for H- + H → H2 + e, Astrophys. J. 148, L155-L156 (1967).Google Scholar
  234. 233.
    D. Hyatt and L. Stanton, Application of a multipole potential in a theoretical investigation of collision cross-sections for ions with linear molecules, Proc. Roy. Soc. Lond. A 318, 107–118 (1970). [Errata: Chem. Phys. Letters 10, 12 (1971)].Google Scholar
  235. 234.
    A. M. Arthurs and A. Dalgarno. The mobilities of ions in molecular gases, Proc. Roy. Soc. Lond. A 256, 552–558 (1960).Google Scholar
  236. 235.
    J. V. Dugan Jr., and J. L. Magee, in “Advances in Chemical Physics” (J. O. Hirschfelder and D. Henderson, eds.), Vol. 21, pp. 207–235, Interscience, New York (1971).Google Scholar
  237. 236.
    D. P. Beggs and F. H. Field, Reversible reactions of gaseous ions. I. Methane-water system, J. Am. Chem. Soc. 93, 1567–1575 (1971).Google Scholar
  238. 237.
    J. H. Futrell, M. J. Henchman, D. Hyatt, and T. H. McGee, to be published.Google Scholar
  239. 238.
    J. V. Dugan Jr. and R. B. Canright Jr., A preliminary study of vibrational effects in ion-dipole collisions: “classical tunneling,” Chem. Phys. Letters 8, 253–258 (1971).Google Scholar
  240. 239.
    K. R. Ryan, Ionic collision processes in gaseous ammonia, J. Chem. Phys. 53, 3844–3848 (1970).Google Scholar
  241. 240.
    J. V. Dugan, Jr., Comparison of numerical capture cross sections with experimental reaction cross sections for NH3 + + NH3, Chem. Phys. Letters 8, 198–200 (1971).Google Scholar
  242. 241.
    L. J. Leger and G. G. Meisels, Preferred dipole orientation in ion-polar molecule reactions, Chem. Phys. Letters 1, 661–664 (1968).Google Scholar
  243. 242.
    L. J. Leger and G. G. Meiseis, Ion-polar-molecule reactions: energy dependency of hydrogen atom and ion transfer in the methanol-acetaldehyde system, J. Chem. Phys. 52, 4319–4324 (1970).Google Scholar
  244. 243.
    W.B. Maier II, Reactions between H+ and D2, J. Chem. Phys. 54, 2732–2739 (1971).Google Scholar
  245. 244.
    J. Krenos and R. Wolfgang, “Simplest” chemical reactions: exchange in the H3 + system, J. Chem. Phys. 52, 5961–5962 (1970).Google Scholar
  246. 245.
    T. F. George and R. J. Suplinskas, Kinematic model for reaction. III. Detailed dynamics of the reaction of Ar+ with D2, J. Chem. Phys. 54, 1037–1045 (1971).Google Scholar
  247. 246.
    T. F. George and R. J. Suplinskas, Kinematic model for reaction. IV. Orientation and isotope effect in the Ar+ + HD reaction, J. Chem. Phys. 54, 1046–1049 (1971).Google Scholar
  248. 247.
    A. E. Roche, M. M. Sutton, D. K. Bohme, and H. I. Schiff, Determination of proton affinity from the kinetics of proton transfer reactions. I. Relative proton affinities, J. Chem. Phys. 55, 5480–5484 (1971).Google Scholar
  249. 248.
    H.-U. Mittmann, H.-P. Weise, A. Ding, and A. Henglein, Streuung von Ionen. I. Regenbogeneffekt bei der elastischen Streuung von Protonen an Argon, Z. Naturforsch. 26a, 1112–1121 (1971).Google Scholar
  250. 249.
    A. C. Roach and P. Kuntz, The potential curve of ArH+ and the heats of the reactions Ar+ + H2 → ArH+ + H and Ar + H2 + → ArH+ + H, Chem. Comm. 1336–1337 (1970).Google Scholar
  251. 250.
    T. F. Moran and L. Friedman, Application of the Piatt electrostatic model to diatomic hydride ions, J. Chem. Phys. 40, 860–866 (1964).Google Scholar
  252. 251.
    E. E. Nikitin, Present-day state of the theory of bimolecular reactions, Russ. Chem. Rev. 38, 505–512 (1969).Google Scholar
  253. 252.
    M. Vestal, in “Fundamental Processes in Radiation Chemistry” (P. J. Ausloos, ed.), pp. 59–118, Interscience, New York (1968).Google Scholar
  254. 253.
    M. H. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, Dynamics of the reactions of O2 + with H2 and D2, J. Phys. Chem. 75, 1426–1437 (1971).Google Scholar
  255. 254.
    A. S. Werner, Ph.D. Thesis, University of California at Berkeley (1971); Lawrence Radiation Laboratory Report UCRL-20363 (April 1971).Google Scholar
  256. 255.
    Z. Herman, A. Lee, and R. Wolfgang, Crossed-beam studies of energy dependence of intermediate complex formation in an ion-molecule reaction, J. Chem. Phys. 51, 452–454 (1969);Google Scholar
  257. 255a.
    R. Wolfgang, Energy and chemical reaction. I. Dynamics of simple ionic and atomic processes, Accounts Chem. Res. 2, 248–256 (1969).Google Scholar
  258. 256.
    W. A. Chupka and M. Kaminsky, Energy distribution and fragmentation processes resulting from electron impact on propane and n-butane, J. Chem. Phys. 35, 1991–1998 (1961).Google Scholar
  259. 257.
    F. P. Abramson and J. H. Futrell, Ion-molecule reactions of methane, J. Chem. Phys. 45, 1925–1931 (1966).Google Scholar
  260. 258.
    H. von Koch, Dissociation of ethane molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of ethane, Arkiv Fysik 28, 559–574 (1965).Google Scholar
  261. 259.
    E. V. Waage and B. S. Rabinovitch, Centrifugal effects in reaction rate theory, Chem. Rev. 70. 377–387 (1970).Google Scholar
  262. 260.
    J. L. Franklin and M. A. Haney, Translational energies of products of exothermic ion-molecule reactions, J. Phys. Chem. 73, 2857–2863 (1969).Google Scholar
  263. 261.
    D.K. Bohme, D.B. Dunkin, F.C. Fehsenfeld, and E.E. Ferguson, Flowing afterglow studies of ion-molecule association reactions, J. Chem. Phys. 51, 863–872 (1969).Google Scholar
  264. 262.
    J. M. S. Henis, An ion cyclotron resonance study of ion-molecule reactions in methanol, J. Am. Chem. Soc. 90, 844–851 (1968).Google Scholar
  265. 263.
    Z. Herman, P. Hierl, A. Lee, and R. Wolfgang, Direct mechanism of reaction CH3 + + CH4 → C2H5 + + H2, J. Chem. Phys. 51, 454–455 (1969).Google Scholar
  266. 264.
    J. C. Polanyi, Dynamics of chemical reactions, Disc. Faraday Soc. 44, 293–307 (1967).Google Scholar
  267. 265.
    S. N. Ghoshal, An experimental verification of the theory of compound nucleus, Phys. Rev. 80, 939–942 (1950).Google Scholar
  268. 266.
    J. N. Butler and G. B. Kistiakowsky, Reactions of methylene. IV. Propylene and cyclopropane, J. Am. Chem. Soc. 82, 759–765 (1960).Google Scholar
  269. 267.
    R. Wolfgang, Energy and chemical reaction. II. Intermediate complexes vs. direct mechanisms, Acccounts Chem. Res. 3, 48–54 (1970).Google Scholar
  270. 268.
    P. Pechukas and J. C. Light, On detailed balancing and statistical theories of chemical kinetics, J. Chem. Phys. 42, 3281–3291 (1965).Google Scholar
  271. 269.
    F. A. Wolf, Computer calculations of ion-molecule reactions, J. Chem. Phys. 44, 1619–1628 (1966).Google Scholar
  272. 270.
    L. M. Tannenwald, On the rarity of certain ion-molecule reactions, Proc. Phys. Soc. Lond. 87, 109–117 (1966).Google Scholar
  273. 271.
    E. E. Nikitin, Statistical theory of exothermic ion-molecule reactions, Theor. Exp. Chem. 1, 275–280 (1965).Google Scholar
  274. 272.
    F. A. Wolf and J. L. Haller, Statistical theory of four-body bimolecular resonant ion-molecule reactions, J. Chem. Phys. 52, 5910–5922 (1970).Google Scholar
  275. 273.
    R. Wolfgang, Disc. Faraday Soc. 44, 80 (1967).Google Scholar
  276. 274.
    J. C. Light, Disc. Faraday Soc. 44, 80–81 (1967).Google Scholar
  277. 275.
    R. D. Levine, Disc. Faraday Soc. 44, 81–82 (1967).Google Scholar
  278. 276.
    J. C. Tully, Z. Herman, and R. Wolfgang, Crossed-beam study of the reaction N+ + O2, → NO+ + O, J. Chem. Phys. 54, 1730–1737 (1971).Google Scholar
  279. 277.
    P. M. Hierl, Z. Herman and R. Wolfgang, Chemical accelerator studies of isotope effects on collision dynamics of ion-molecule reactions: elaboration of a model for direct reactions, J. Chem. Phys. 53, 660–673 (1970).Google Scholar
  280. 278.
    D. L. Albritton, A. L. Schmeltekopf, and E. E. Ferguson, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 331–332, M.I.T. Press, Cambridge (1969).Google Scholar
  281. 279.
    D. C. Fullerton and T. F. Moran, Application of the statistical phase-space theory to the reactions of rare-gas ions with nitrogen molecules, J. Chem. Phys. 54, 5221–5230 (1971).Google Scholar
  282. 280.
    T. F. Moran and L. Friedman, Energy transfer in the reaction of He+ with O2, J. Geophys. Res. 70, 4992–4994 (1965).Google Scholar
  283. 281.
    J. F. Paulson, private communication of unpublished results.Google Scholar
  284. 282.
    J.J. Leventhal, Collision mechanism leading to the formation of NO+ in O+-N2 collisions, J. Chem. Phys. 54, 5102–5103 (1971).Google Scholar
  285. 283.
    E. E. Ferguson, F. C. Fehsenfeld, P. D. Goldan, and A. L. Schmeltekopf, and H. I. Schiff, Laboratory measurement of the rate of the reaction N2 + + O → NO+ + N at thermal energy, Plantary Space Sci. 13, 823–827 (1965).Google Scholar
  286. 284.
    I. Opauszky, K. Birkinshaw, and M. J. Henchman, unpublished results.Google Scholar
  287. 285.
    J. J. Leventhal, Energetics of HeH+ formed in H2 +-He collisions, J. Chem. Phys. 54, 3279–3282 (1971).Google Scholar
  288. 286.
    F. S. Klein and L. Friedman, Intramolecular isotope effects in the HD-rare gas ion-molecule reactions, J. Chem. Phys. 41, 1789–1798 (1964).Google Scholar
  289. 287.
    C. R. Iden, R. Liardon, and W. S. Koski, Complex formation in the reaction C+(D2,D) CD+, J. Chem. Phys. 54, 2757–2758 (1971).Google Scholar
  290. 288.
    E. E. Nikitin, Statistical theory of endothermic reactions. Part 1. Bimolecular reactions, Theor. Exp. Chem. 1, 83–89 (1965).Google Scholar
  291. 289.
    L. D. Doverspike and R. L. Champion, Experimental investigations of ion-molecule reactions of D2 + with D2 and H2, J. Chem. Phys. 46, 4718–4725 (1967).Google Scholar
  292. 290.
    J. Durup and M. Durup, Collisions réactives entre ions et molécules à énergie incidente de 1 à 50 eV. Le système D2 + + D2, J. Chim. Phys. 64, 386–394 (1967).Google Scholar
  293. 291.
    B. H. Mahan, Molecular orbital correlations and ion-molecule reaction dynamics. J. Chem. Phys. 55, 1436–1446 (1971).Google Scholar
  294. 292.
    G. Bosse, A. Ding, and A. Henglein, Chemische Reaktionskinematik. XIV. Die Winkel-und Geschwindigkeitsverteilung für die Reaktion O2 + + D2 → O2D+ + D, und der Isotopieeffekt für die Reaktion mit HD, Ber. Bunsenges. Physik. Chem. 75, 413–420 (1971).Google Scholar
  295. 293.
    R. K. Preston and J. C. Tully, Effects of surface crossing in chemical reactions: the H3 + system, J. Chem. Phys. 54, 4297–4304 (1971).Google Scholar
  296. 294.
    E. E. Ferguson, D. K. Bohme, F. C. Fehsenfeld, and D. B. Dunkin, Temperature dependence of slow ion-atom interchange reactions, J. Chem. Phys. 50, 5039–5040 (1969).Google Scholar
  297. 295.
    A. L. Schmeltekopf, F. C. Fehsenfeld, G. I. Gilman, and E. E. Ferguson, Reaction of atomic oxygen ions with vibrationally excited nitrogen molecules, Planetary Space Sci. 15, 401–406 (1967).Google Scholar
  298. 296.
    P. Stubbe, Temperature dependence of the rate constants for the reactions O+ + O2 → O2 + + O and O+ + N2 → NO+ + N, Planetary Space Sci. 17, 1221–1331 (1969).Google Scholar
  299. 297.
    J. B. Hasted and L. Moore, in “Abstracts of Papers, Sixth International Conference on the Physics of Electronic and Atomic Collisions” (I. Amdur, ed.), pp. 328–330, M. I. T. Press, Cambridge (1969).Google Scholar
  300. 298.
    Ju. N. Demkov, in “Atomic Collision Processes” (M. R. C. McDowell, ed.), pp. 831–838, North-Holland Publishing Co., Amsterdam (1964).Google Scholar
  301. 299.
    K. Birkinshaw and J. B. Hasted, Inelastic collisions between atomic ions and diatomic molecules, J. Phys. B4, 1711–1725 (1971).Google Scholar
  302. 300.
    R. L. Champion, L. D. Doverspike, and T. L. Bailey, Collision-induced dissociation of D2 + ions by argon and nitrogen, J. Chem. Phys. 45, 4377–4384 (1966).Google Scholar
  303. 301.
    T. O. Tiernan and R. E. Marcotte, Collision-induced dissociation of NO+ and O2 + at low kinetic energies. Effects of internal ionic excitation, J. Chem. Phys. 53, 2107–2122 (1970).Google Scholar
  304. 302.
    M. H. Cheng, M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, Collision induced dissociation of molecular ions, J. Chem. Phys. 52, 5518–5525 (1970).Google Scholar
  305. 303.
    R. W. Rozett and W. S. Koski, Collision-induced dissociation on HD+ by rare gases, J. Chem. Phys. 49, 2691–2695 (1968).Google Scholar
  306. 304.
    P. Wilmenius and E. Lindholm, Dissociation of methanol molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of methanol with very slow positive ions, Arkiv Fysik 21, 97–122 (1962).Google Scholar
  307. 305.
    T. F. Moran and L. Friedman, Cross sections and intramolecular isotope effects in AB-HD ion-molecule reactions, J. Chem. Phys. 42, 2391–2405 (1965).Google Scholar
  308. 306.
    W. S. Koski, Some ion-molecule reactions of the C+ ion in the gas phase, Record Chem. Progr. (Kresge-Hooker Sci. Lib.) 31, 155–170 (1970).Google Scholar
  309. 307.
    M. A. Berta and W. S. Koski, The argon-deuterium hydride ion reaction, J. Am. Chem. Soc. 86, 5098–5101 (1964).Google Scholar
  310. 308.
    R. D. Levine, Quasi-bound states in molecular collisions, Accounts Chem. Res. 3, 273–280 (1970).Google Scholar
  311. 309.
    G. Heiche and E. A. Mason, Ion mobilities with charge exchange, J. Chem. Phys. 53, 4687–4696 (1970).Google Scholar
  312. 310.
    J. Krenos, R. Preston, J. Tully and R. Wolfgang, Reaction of hydrogen atomic ions with hydrogen molecules: experiment, ab initio theory, and a conceptual model, Chem. Phys. Letters 10, 17–21 (1971).Google Scholar
  313. 311.
    G. A. Sinnott, Bibliography of Ion-Molecule Reaction Rate Data, JILA Information Center Report # 9, University of Colorado (August 1969).Google Scholar
  314. 312.
    A.R. Hochstim (ed.), “Bibliography of Chemical Kinetics and Collision Processes,” IFI/Plenum, New York-Washington (1969).Google Scholar
  315. 313.
    “Mass Spectrometry Bulletin,” Mass Spectrometry Data Center, AWRE, Aldermaston, Berks, England, Vols. 1–5 (1966–71).Google Scholar
  316. 314.
    “Bibliography of Atomic and Molecular Processes,” Atomic and Molecular Processes Information Center, Oak Ridge National Laboratory, Tenn. Vols. 1–13 (1963–69).Google Scholar
  317. 315.
    J. Polanyi, Nonequilibrium processes, Appl. Optics. 10, 1717–1724 (1971).Google Scholar
  318. 316.
    B. R. Turner, J. A. Rutherford, and D. M. J. Compton, Abundance of excited ions in O+ and O2 + ion beams, J. Chem. Phys. 48, 1602–1608 (1968).Google Scholar
  319. 317.
    R. F. Mathis, B. R. Turner, and J. A. Rutherford, Abundance of exicted ions in an NO+ ion beam, J. Chem. Phys. 49, 2051–2056 (1968).Google Scholar
  320. 318.
    J. L. Kinsey, Microscopic reversibility for rates of chemical reactions carried out with partial resolution of the product and reactant states, J. Chem. Phys. 54, 1206–1217 (1971).Google Scholar
  321. 319.
    J. Dubrin and M. J. Henchman, in “MTP International Review of Science. Physical Chemistry,” Ser. 1, Vol. 9: Reaction Kinetics (J. C. Polanyi, ed.) Chapter 7, Butterworths, London (1972).Google Scholar
  322. 320.
    M. B. Comisarow, Comprehensive theory for ion cyclotron resonance power absorption: application to line shapes for reactive and nonreactive ions, J. Chem. Phys. 55, 205–217 (1971).Google Scholar
  323. 321.
    J. L. Beauchamp, in “Annual Reviews of Physical Chemistry” (H. L. Eyring, ed.), Vol. 22, pp. 527–561, Annual Reviews, Palo Alto (1971).Google Scholar
  324. 322.
    A. Pipano and J. J. Kaufman, in “Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions” (L. Branscomb, ed.), pp. 966–968, North-Holland, Amsterdam (1971).Google Scholar
  325. 323.
    R. D. Levine, in “MTP International Review of Science, Physical Chemistry,” Ser. 1, Vol. 1: Theoretical Chemistry (W. Byers Brown, ed.), Chapter 7, Butterworths, London (1972).Google Scholar
  326. 324.
    M. G. Holliday, J. T. Muckerman, and L. Friedman, Investigation of back-scattering in the D+/H2 reaction system, J. Chem. Phys. 54, 3853–3856 (1971).Google Scholar
  327. 325.
    S. B. Woo and S. F. Wong, Interpretation of rate constants measured in drift tubes in terms of cross sections, J. Chem. Phys. 55, 3531–3541 (1971).Google Scholar
  328. 326.
    G. A. Gray, in “Advances in Chemical Physics” (I. Prigogine and S. A. Rice, eds.), Vol. 19, pp. 141–207, Wiley-Interscience, New York (1971).Google Scholar
  329. 327.
    R. C. Dunbar, Transient ion cyclotron resonance method for studying ion-molecule collision and charge-transfer rates: N2 + and CH4 +, J. Chem. Phys. 54, 711–719 (1971).Google Scholar
  330. 328.
    R. T. McIver, Jr., A trapped ion analyzer cell for ion cyclotron resonance spectroscopy, Rev. Sci. Instr. 41, 555–558 (1970).Google Scholar
  331. 329.
    R. T. Mclver, Jr., and M. A. Haney, cited in Ref. 321.Google Scholar
  332. 330.
    T. B. McMahon and J. L. Beauchamp, Determination of ion-transit times in an ion cyclotron resonance spectrometer, Rev. Sci. Instr. 42, 1632–1638 (1971).Google Scholar
  333. 331.
    W. T. Huntress Jr., M. M. Mosesman, and D. D. Elleman, Relative rates and their dependence on kinetic energy for ion-molecule reactions in ammonia, J. Chem. Phys. 54, 843–849 (1971).Google Scholar
  334. 332.
    A. G. Marshall, Theory for ion cyclotron resonance absorption line shapes, J. Chem. Phys. 55, 1343–1354 (1971).Google Scholar
  335. 333.
    J. A. Burt, J. L. Dunn, M. J. McEwan, M. M. Sutton, A. E. Roche, and H. I. Schiff, Some ion-molecule reactions of H3 + and the proton affinity of H2, J. Chem. Phys. 52, 6062–6075 (1970).Google Scholar
  336. 334.
    Y. Kaneko, N. Kobayashi, and I. Kanomata, Low energy ion-neutral reactions. I. 22Ne+ + 20Ne, and Ar+ + N2, J. Phys. Soc. Japan 27, 992–998 (1969); Y. Kaneko, private communication.Google Scholar
  337. 335.
    R. D. Levine, “Quantum Mechanics of Molecular Rate Processes,” Oxford University Press, London (1969), pp. 252–259.Google Scholar
  338. 336.
    G. Bosse, A. Ding, and A. Henglein, Chemische Reaktionskinematik. XV. Winkel- und Geschwindingskeitsverteilung des Produkt-Ions der Reaktion Kr+ + D2 → KrD+ + D, Z. Naturforsch. 26a, 932–933 (1971).Google Scholar
  339. 337.
    P. F. Fennelly, Ph.D. Thesis, Brandeis University (1972); P. F. Fennelly, A. S. Werner, and M. J. Henchman, unpublished results.Google Scholar
  340. 338.
    B. H. Mahan, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Michael Henchman
    • 1
  1. 1.Department of ChemistryBrandeis UniversityWalthamUSA

Personalised recommendations