Ion-Molecule Reactions by Photoionization Techniques

  • William A. Chupka


The vast majority of investigations of ion-molecule reactions have been carried out with ions produced by electron impact. However, within the past several years photoionization techniques have been applied to this area of research. The experimental techniques of photoionization are generally more difficult to apply than those of electron impact, but have certain strong advantages in the ability to provide more precisely characterized preparations of the reactant ions. Not only can reactant ions of one species often be prepared with high purity, but their internal energy may be known as well. In favorable cases, ions can be prepared in rather pure internal-energy states or known distributions of states which can be varied in order to study the effects of the various forms of internal energy on the course of the subsequent reactions of the ions. Furthermore, photons produce no space charge and no pyrolysis and are unaffected by electric or magnetic fields. Thus conditions in the ionization region are better controlled than is the case with electron-impact sources. The purpose of this chapter is to describe the photoionization technique with its advantages and disadvantages, to show how the characteristics of the ion preparation can be controlled, and to describe some experiments in which the advantages of the technique have been exploited to provide information which has not been obtainable by other techniques.


Vibrational Energy Reaction Cross Section Rydberg State Direct Ionization Photoionization Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hurzeler, M. G. Inghram, and J. P. Morrison, J. Chem. Phys. 27, 313 (1958);CrossRefGoogle Scholar
  2. 1a.
    H. Hurzeler, M. G. Inghram, and J. P. Morrison, J. Chem. Phys. 28, 26 (1958).CrossRefGoogle Scholar
  3. 2.
    G. L. Weissler, J. A. R. Samson, M. Ogawa, and G. R. Cook, J. Opt. Soc. Am. 49, 338 (1959).CrossRefGoogle Scholar
  4. 3.
    E. Schönheit, Z. Naturforsch. 15a, 841 (1960);Google Scholar
  5. 3a.
    E. Schönheit, Z. Naturforsch. 16a 1094 (1961);Google Scholar
  6. 3b.
    E. Schönheit, Z. Physik 149, 153 (1957);CrossRefGoogle Scholar
  7. 3c.
    E. Schönheit, Z. Angew. Phys. 9, 171 (1957).Google Scholar
  8. 4.
    F. J. Cornes and W. Lessman, Z. Naturforsch. 19a, 65 (1964).Google Scholar
  9. 5.
    V. H. Dibeler and R. M. Reese, J. Res. Bur. Std. (U.S.) 68a, 409 (1964).Google Scholar
  10. 6.
    B. Brehm, Z. Naturforsch. 21a, 196 (1966).Google Scholar
  11. 7.
    W. Poschenrieder and P. Warneck, J. Appl. Phys. 37, 2812 (1966).CrossRefGoogle Scholar
  12. 8.
    J. Berkowitz and W. A. Chupka, J. Chem. Phys. 45, 1287 (1966).CrossRefGoogle Scholar
  13. 9.
    F. J. Cornes, A. Elzer, and F. Speier, Z. Naturforsch. 23a, 144 (1968).Google Scholar
  14. 10.
    J. A. R. Samson, “Techniques of Vacuum Ultraviolet Spectroscopy,” John Wiley and Sons, New York (1967).Google Scholar
  15. 11.
    M. Seya, Sci. Light (Tokyo) 2, 8 (1952);Google Scholar
  16. 11a.
    T. Namioka, Sci. Light (Tokyo) 3, 15 (1954).Google Scholar
  17. 12.
    K. L. Bath and B. Brehm, Z. Angew. Phys. 19, 39 (1965).Google Scholar
  18. 13.
    H. E. Hinteregger, “Vistas in Astronautics” (M. Alperin and M. Stern, eds.), p. 146, Pergamon Press, New York (1958).Google Scholar
  19. 14.
    R. E. Huffman, Y. Tanaka, and J. C. Larrabee, Appl. Opt. 2, 617 (1963).CrossRefGoogle Scholar
  20. 15.
    R. E. Huffman, J. C. Larrabee, and Y. Tanaka, Appl. Opt. 4, 1581 (1965).CrossRefGoogle Scholar
  21. 16.
    M. E. Levy and R. E. Huffman, J. Quant. Spectrosc. Radiat. Transfer 9, 1349 (1969).CrossRefGoogle Scholar
  22. 17.
    R. P. Madden, D. L. Ederer, and K. Codling, Appl. Opt. 6, 31 (1967).CrossRefGoogle Scholar
  23. 18.
    R. P. Godwin, Naturwiss. 51, 1 (1969).Google Scholar
  24. 19.
    P. Warneck, J. Chem. Phys. 46, 502 (1967);CrossRefGoogle Scholar
  25. 19a.
    P. Warneck, J. Chem. Phys. 46, 513 (1967).CrossRefGoogle Scholar
  26. 20.
    W. A. Chupka, M. E. Russell, and K. Refaey, J. Chem. Phys. 48, 1518 (1968).CrossRefGoogle Scholar
  27. 21.
    J. Light, J. Chem. Phys. 41, 586 (1964).CrossRefGoogle Scholar
  28. 22.
    W. A. Chupka (unpublished work).Google Scholar
  29. 23.
    G. V. Marr, “Photoionization Processes in Gases,” Academic Press, New York (1967).Google Scholar
  30. 24.
    U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).CrossRefGoogle Scholar
  31. 25.
    J. F. Lowry, D. H. Tomboulian, and D. L. Ederer, Phys. Rev. 137, A1054 (1965).CrossRefGoogle Scholar
  32. 26.
    K. Watanabe, J. Chem. Pys. 22, 1564 (1954).CrossRefGoogle Scholar
  33. 27.
    F. J. Cornes, H. G. Sälzer, and G. Schumpe, Z. Naturforsch. 23a, 137 (1968).Google Scholar
  34. 28.
    U. Fano, Phys. Rev. 124, 1866 (1961).CrossRefGoogle Scholar
  35. 29.
    U. Fano and J. W. Cooper, Phys. Rev. 137, A1364 (1965).CrossRefGoogle Scholar
  36. 30.
    G. R. Cook and P. H. Metzger, J. Chem. Phys. 41, 321 (1964).CrossRefGoogle Scholar
  37. 31.
    K. Yoshino and Y. Tanaka, J. Chem. Phys. 48, 4859 (1968).CrossRefGoogle Scholar
  38. 32.
    J. Berkowitz and W. Chupka, J. Chem. Phys. 51, 2341 (1969).CrossRefGoogle Scholar
  39. 33.
    J. N. Bardsley, Chem. Phys. Letters 2, 329 (1968).CrossRefGoogle Scholar
  40. 34.
    W. A. Chupka, J. Berkowitz, and K. Refaey, J. Chem. Phys. 50, 1938 (1969).CrossRefGoogle Scholar
  41. 35.
    R. S. Berry, J. Chem. Phys. 45, 1228 (1966).CrossRefGoogle Scholar
  42. 36.
    J. N. Bardsley, Chem. Phys. Letters 1, 229 (1967).CrossRefGoogle Scholar
  43. 37.
    S. E. Nielsen and R. S. Berry, Chem. Phys. Letters 2, 503 (1968);CrossRefGoogle Scholar
  44. 37a.
    R. S. Berry and S. E. Nielsen, Phys. Rev. A1, 395 (1970).Google Scholar
  45. 38.
    W. A. Chupka and J. Berkowitz, J. Chem. Phys. 48, 5727 (1968);Google Scholar
  46. 38a.
    W. A. Chupka and J. Berkowitz, J. Chem. Phys. 51, 4244 (1969).CrossRefGoogle Scholar
  47. 39.
    W. A. Chupka and M. E. Russell, J. Chem. Phys. 49, 5426 (1968).CrossRefGoogle Scholar
  48. 40.
    C. A. Coulson and H. L. Strauss, Proc. Roy. Soc. (London) A269, 443 (1962).Google Scholar
  49. 41.
    D. W. Turner, Advan. Phys. Org. Chem. 4, 31 (1966).CrossRefGoogle Scholar
  50. 42.
    W. A. Chupka, J. Chem. Phys. 30, 191 (1959).CrossRefGoogle Scholar
  51. 43.
    G. Herzberg, “Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules,” 2nd ed., D. Van Nostrand, Princeton, N. J. (1950).Google Scholar
  52. 44.
    V. H. Dibeler and J. A. Walker, J. Opt. Soc. Am. 57, 1007 (1967).CrossRefGoogle Scholar
  53. 45.
    G. Herzberg “Atomic Spectra and Atomic Structure,” 2nd ed., Dover Publications, New York (1944).Google Scholar
  54. 46.
    J. Koyano, I. Omura, and I. Tanaka, J. Chem. Phys. 44, 3850 (1966).CrossRefGoogle Scholar
  55. 47.
    R. Barber, W. H. Hamill, and R. R. Williams Jr., J. Phys. Chem. 62, 825 (1959).Google Scholar
  56. 48.
    W. A. Chupka, J. Chem. Phys. 48, 2337 (1968).CrossRefGoogle Scholar
  57. 49.
    A. D. Baker, C. Baker, C. R. Brundle, and D. W. Turner, Int. J. Mass Spectrom. Ion Phys. 1, 285 (1968).CrossRefGoogle Scholar
  58. 50.
    W. A. Chupka and J. Berkowitz (unpublished data).Google Scholar
  59. 51.
    P. Warneck, J. Chem. Phys. 47, 4279 (1967).CrossRefGoogle Scholar
  60. 52.
    P. Warneck, Planetary Space Sci. 15, 1349 (1967).CrossRefGoogle Scholar
  61. 53.
    P. Warneck, J. Geophys. Res. 74, 396 (1969);CrossRefGoogle Scholar
  62. 53a.
    P. Warneck, J. Geophys. Res. 72, 1651 (1967).CrossRefGoogle Scholar
  63. 54.
    F. C. Fehsenfeld, A. L. Schmeltekopf, D. M. Dunkin, and E. E. Ferguson, Compilation of Reaction Rate Constants Measured in the ESSA Flowing Afterglow System to August, 1969, ESSA Technical Report ERL 135-AL3 (September 1969), U.S. Gov’t. Priniting Office.Google Scholar
  64. 55.
    B. R. Reuben and L. Friedman, J. Chem. Phys. 37, 1636 (1962).CrossRefGoogle Scholar
  65. 56.
    F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys. 45, 404 (1966).CrossRefGoogle Scholar
  66. 57.
    L. W. Sieck, S. K. Searles, and P. Ausloos, J. Am. Chem. Soc. 91, 7627 (1969).CrossRefGoogle Scholar
  67. 58.
    D. Vogt, Int. J. Mass Spectrom. Ion Phys. 3, 81 (1969);CrossRefGoogle Scholar
  68. 58a.
    D. Vogt, B. Hauffe, and H. Neuert, Z. Physik 232, 439 (1970)CrossRefGoogle Scholar
  69. 59.
    C. F. Giese and W. B. Maier II, J. Chem. Phys. 39, 117 (1963);Google Scholar
  70. 59a.
    C. F. Giese and W. B. Maier II, J. Chem. Phys. 39, 739 (1963).CrossRefGoogle Scholar
  71. 60.
    W. B. Maier II, J. Chem. Phys. 41, 2174 (1964);CrossRefGoogle Scholar
  72. 60a.
    W. B. Maier II, J. Chem. Phys. 42, 1970 (1965).CrossRefGoogle Scholar
  73. 61.
    D. Gutman, W. A. Chupka, and J. Berkowitz, in “Proc. of the 18th Annual Conf. on Mass Spectrometry and Allied Topics, San Francisco, June 1970.”Google Scholar
  74. 62.
    W. A. Chupka and M. E. Russell, J. Chem. Phys. 48, 1527 (1968).CrossRefGoogle Scholar
  75. 63.
    J. C. Light, J. Chem. Pyhs. 40, 3221 (1964);CrossRefGoogle Scholar
  76. 63a.
    J. C. Light and J. Lin, J. Chem. Phys. 43, 3209 (1965).CrossRefGoogle Scholar
  77. 64.
    W. A. Chupka, M. E. Russell, and K. Refaey, J. Chem. Phys, 48, 1518 (1968).CrossRefGoogle Scholar
  78. 65.
    L. D. Doverspike and R. L. Champion, J. Chem. Phys. 46, 4718 (1967).CrossRefGoogle Scholar
  79. 66.
    J. Durup and M. Durup, J. Chem. Phys. 64, 386 (1967).Google Scholar
  80. 67.
    W. A. Chupka, J. Berkowitz, and M. E. Russell, in “Proc. of the Sixth Int. Conf. on the Physics of Electronic and Atomic Collisions, Cambridge, Massachusetts, July-August 1969,” p. 71, The MIT Press, Cambridge, Massachusetts.Google Scholar
  81. 68.
    E. F. Gurnee and J. L. Magee, J. Chem. Phys. 26, 1237 (1957).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • William A. Chupka
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations