Advertisement

Positive-Ion—Molecule Reaction Studies in a Single Electron-Impact Source

  • J. L. Franklin

Abstract

If a beam of electrons passing through the ion source of a mass spectrometer has sufficient energy, it will bring about the formation of positive ions along the path of the electron beam. A small, positive potential is normally applied to the repeller and causes the ions to drift toward the exit slit and into the ion gun and the analyzer. A typical source is shown in Fig. 1. Under ordinary operating conditions, the pressure in the ion source is of the order of 10-6 Torr and the voltage applied to the repeller is 1–10 V. At these conditions, the mean free path of the ions in the source is of the order of many meters and since the distance from the electron beam to the exit slit is usually between 0.2 and 0.5 cm, the probability that the ions will collide with a neutral molecule in passing out of the source is vanishingly small. If the pressure is increased to 10-3 Torr, however, the mean free path is greatly reduced and from 1 to 10% of the ions might be expected to undergo collision in passing out of the source. At 0.01 Torr, about one-half of the ions will undergo collision, and at 0.1 Torr, essentially all of them will do so. In fact, above 0.1 Torr, many can undergo several collisions before leaving the source. Thus, at pressures in the order of 10-3 Torr, collision reactions might begin to be observable. In fact, this is what has been experienced.

Keywords

Kcal Mole Proton Affinity Source Pressure Translational Energy Primary Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Tal’roze and A. K. Lyubimova, Dokl. Nauk SSSR 86, 909 (1952).Google Scholar
  2. 2.
    D. P. Stevenson and D. O. Schissler, J. Chem. Phys. 23, 1353 (1955).CrossRefGoogle Scholar
  3. 3.
    D. O. Schissler and D. P. Stevenson, J. Chem. Phys. 24, 926 (1956).CrossRefGoogle Scholar
  4. 4.
    F. H. Field, J. L. Franklin, and F. W. Lampe, J. Am. Chem. Soc. 79, 2419 (1957).CrossRefGoogle Scholar
  5. 5.
    F. H. Field, J. L. Franklin, and F. W. Lampe, J. Am. Chem. Soc. 79, 2665 (1957).CrossRefGoogle Scholar
  6. 6.
    H. W. Washburn, C. E. Berry, and L. G. Hall, Mass Spectrometry in Physics Research, No. 20, National Bureau of Standards, Circular 522 (1953).Google Scholar
  7. 7.
    J. C. J. Thynne and A. G. Harrison, Trans. Faraday Soc. 62, 2468 (1966).CrossRefGoogle Scholar
  8. 8.
    D. P. Stevenson and D. O. Schissler, J. Chem. Phys. 29, 282 (1958).CrossRefGoogle Scholar
  9. 9.
    M. S. B. Munson and F. H. Field, J. Am. Chem. Soc. 88, 2621 (1966).CrossRefGoogle Scholar
  10. 10.
    S. M. Schildcrout and J. L. Franklin, J. Am. Chem. Soc. 92, 251 (1970).CrossRefGoogle Scholar
  11. 11.
    G. A. W. Derwish, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Am. Chem. Soc. 87, 1159(1965).CrossRefGoogle Scholar
  12. 12.
    J. L. Franklin and F. H. Field, J. Am. Chem. Soc. 82, 3555 (1961).CrossRefGoogle Scholar
  13. 13.
    F. P. Abramson and J. H. Futrell, J. Chem. Phys. 46, 3264 (1967).CrossRefGoogle Scholar
  14. 14.
    V. Čermák and Z. Herman, Nucleonics 19, 106 (1961).Google Scholar
  15. 15.
    J. W. Otvos and D. P. Stevenson, J. Am. Chem. Soc. 78, 546 (1956).CrossRefGoogle Scholar
  16. 16.
    F. H. Field, J. L. Franklin, and M. S. B. Munson, J. Am. Chem. Soc. 85, 3575 (1963).CrossRefGoogle Scholar
  17. 17.
    V. L. Tal’roze and E. L. Frankevich, “Report on the VIII Mendeleev Conference on Pure and Applied Chemistry (1959),” p. 59;Google Scholar
  18. 17a.
    V. L. Tal’roze and E. L. Frankevich, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk No. 7, p. 1351 (1959);Google Scholar
  19. 17b.
    V. L. Tal’roze and E. L. Frankevich, Zhur. Fiz. Khim. 34, 2709 (1960).Google Scholar
  20. 18.
    M. I. Markin, G. V. Karachevtzev, and V. L. Tal’roze, Izv. Akad. Nauk. SSR, Otd. Khim. Nauk No. 8, p. 1528 (1961).Google Scholar
  21. 19.
    K. R. Ryan and J. H. Futrell, J. Chem. Phys. 43, 3009 (1965).CrossRefGoogle Scholar
  22. 20.
    K. R. Ryan, J. H. Futrell, and C. D. Miller, Rev. Sci. Instr. 37, 107 (1966).CrossRefGoogle Scholar
  23. 21.
    T. W. Shannon, F. Meyer, and A. G. Harrison, Can. J. Chem. 43, 159 (1965).CrossRefGoogle Scholar
  24. 22.
    C. W. Hand and H. von Weyssenhoff, Can. J. Chem. 42, 195 (1964).CrossRefGoogle Scholar
  25. 23.
    J. L. Franklin, Y. Wada, P. Natalis, and P. M. Hierl, J. Phys. Chem. 70, 2353 (1966).CrossRefGoogle Scholar
  26. 24.
    F. W. Lampe and G. G. Hess, J. Am. Chem. Soc. 86, 2952 (1964).CrossRefGoogle Scholar
  27. 25.
    P. M. Becker and F. W. Lampe, J. Am. Chem. Soc. 86, 5347 (1964);CrossRefGoogle Scholar
  28. 25a.
    P. M. Becker and F. W. Lampe, J. Chem. Phys. 42, 3857 (1965).CrossRefGoogle Scholar
  29. 26.
    A. Weingartshofer and E. M. Clarke, Phys. Rev. Letters 12, 591 (1964).CrossRefGoogle Scholar
  30. 27.
    A. Giardini-Guidoni and L. Friedman, J. Chem. Phys. 45, 937 (1966).CrossRefGoogle Scholar
  31. 28.
    A. G. Harrison, A. Ivko, and T. W. Shannon, Can. J. Chem. 44, 1351 (1966).CrossRefGoogle Scholar
  32. 29.
    B. G. Reuben and L. Friedman, J. Chem. Phys. 37, 1636 (1962).CrossRefGoogle Scholar
  33. 30.
    A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 62, 2804 (1966).CrossRefGoogle Scholar
  34. 31.
    C.F. Giese, in “Ion-Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 20, American Chemical Society, Washington, D.C. (1966).CrossRefGoogle Scholar
  35. 32.
    F. S. Klein and L. Friedman, J. Chem. Phys. 41, 1789 (1964).CrossRefGoogle Scholar
  36. 33.
    T. F. Moran and L. Friedman, J. Chem. Phys. 39, 2491 (1963).CrossRefGoogle Scholar
  37. 34.
    H. von Koch and L. Friedman, J. Chem. Phys. 38, 1115 (1963).CrossRefGoogle Scholar
  38. 35.
    S. M. Schildcrout and J. L. Franklin, J. Chem. Phys. 51, 4055 (1969).CrossRefGoogle Scholar
  39. 36.
    M. Mosesman and W. T. Huntress, J. Chem. Phys. 53, 462 (1970).CrossRefGoogle Scholar
  40. 37.
    F. H. Field, J. L. Franklin, and M. S. B. Munson, J. Am. Chem. Soc. 85, 3575 (1963).CrossRefGoogle Scholar
  41. 38.
    M. S. B. Munson, J. Am. Chem. Soc. 89, 1772 (1967).CrossRefGoogle Scholar
  42. 39.
    A. G. Harrison and J. M. S. Tait, Can. J. Chem. 40, 1986 (1962).CrossRefGoogle Scholar
  43. 40.
    D. Hutchinson and L. Pobo, paper presented at ASTM Committee E-14 meeting, Chicago (June 1961).Google Scholar
  44. 41.
    T. W. Shannon and A. G. Harrison, J. Chem. Phys. 43, 4206 (1965).CrossRefGoogle Scholar
  45. 42.
    A. G Harrison, Can J. Chem. 41, 236 (1963).CrossRefGoogle Scholar
  46. 43.
    T. W. Shannon and A. G. Harrison, J. Chem. Phys. 43, 4201 (1965).CrossRefGoogle Scholar
  47. 44.
    A. G. Harrison and J. C. J. Thynne, Can. J. Chem. 45, 1321 (1967).CrossRefGoogle Scholar
  48. 45.
    A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 64, 945 (1968).CrossRefGoogle Scholar
  49. 46.
    A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 64, 1287 (1968).CrossRefGoogle Scholar
  50. 47.
    H. Pritchard, J. C. J. Thynne, and A. G. Harrison, Can. J. Chem. 46, 2141 (1968).CrossRefGoogle Scholar
  51. 48.
    A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 62, 2804 (1966).CrossRefGoogle Scholar
  52. 49.
    A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 62, 3345 (1966).CrossRefGoogle Scholar
  53. 50.
    H. Pritchard and A. G. Harrison, J. Chem. Phys. 48, 5623 (1968).CrossRefGoogle Scholar
  54. 51.
    A. G. Harrison and J. J. Myher, J. Chem. Phys. 46, 3276 (1967).CrossRefGoogle Scholar
  55. 52.
    F. H. Field, J. Am. Chem. Soc. 83, 1523 (1961).CrossRefGoogle Scholar
  56. 53.
    F. H. Field and M. S. B. Munson, J. Am. Chem. Soc. 87, 3289 (1965).CrossRefGoogle Scholar
  57. 54.
    G. A. W. Derwish, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 39, 1599 (1963).CrossRefGoogle Scholar
  58. 55.
    S. Wexler and N. Jesse, J. Am. Chem. Soc. 84, 3425 (1962).CrossRefGoogle Scholar
  59. 56.
    C. E. Melton, J. Chem. Phys. 45, 4414 (1966).CrossRefGoogle Scholar
  60. 57.
    M. J. Henchman, H. T. Otwinowska, and F. H. Field, in “Advances in Mass Spectrometry” (M. L. Mead, ed.), p. 359, The Institute of Petroleum, London (1966).Google Scholar
  61. 58.
    P. S. Rudolph and C. E. Melton, J. Phys. Chem. 63, 916 (1959).CrossRefGoogle Scholar
  62. 59.
    P. S. Rudolph and C. E. Melton, J. Chem. Phys. 32, 1128 (1960).CrossRefGoogle Scholar
  63. 60.
    P. Kebarle and E. W. Godbole, J. Chem. Phys. 39, 1131 (1963).CrossRefGoogle Scholar
  64. 61.
    P. Kebarle, R. M. Haynes, and S. Searles, in “Ion-Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 210, American Chemical Society, Washington, D.C. (1966).CrossRefGoogle Scholar
  65. 62.
    P. Kebarle and A. M. Hogg, J. Chem. Phys. 42, 668 (1965).CrossRefGoogle Scholar
  66. 63.
    V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 43, 1969 (1965);CrossRefGoogle Scholar
  67. 63a.
    V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 44, 2307 (1966).CrossRefGoogle Scholar
  68. 64.
    S. Wexler, A. Lifshitz, and A. Quattrochi, in “Ion-Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 193, American Chemical Society, Washington, D.C. (1966).CrossRefGoogle Scholar
  69. 65.
    F. W. Lampe, J. L. Franklin, and F. H. Field, in Progress in Reaction Kinetics (G. Porter, ed.), Vol. 1, p. 67, Pergamon Press, London (1961).Google Scholar
  70. 66.
    M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys. Chem. 68, 3098 (1964).CrossRefGoogle Scholar
  71. 67.
    G. A. W. Derwish, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 41, 2998 (1964).CrossRefGoogle Scholar
  72. 68.
    W. Kaul and R. Fuchs, Z. Naturforsch. 15a, 326 (1960).Google Scholar
  73. 69.
    M. Saporoschenko, Phys. Rev. 111, 1550 (1958).CrossRefGoogle Scholar
  74. 70.
    V. Čermák and Z. Herman, Collection Czech. Chem. Commun. 27, 1493 (1962).Google Scholar
  75. 71.
    M. S. B. Munson, F. H. Field, and J. L. Franklin, J. Chem. Phys. 37, 1790 (1962).CrossRefGoogle Scholar
  76. 72.
    M. C. Cress, P. M. Becker, and F. W. Lampe, J. Chem. Phys. 44, 2212 (1966).CrossRefGoogle Scholar
  77. 73.
    R. K. Curran, J. Chem. Phys. 38, 2974 (1963).CrossRefGoogle Scholar
  78. 74.
    J. L. Franklin and M. S. B. Munson, “Tenth Symp. (Int.) on Combustion,” p. 561, The Combustion Institute (1965).Google Scholar
  79. 75.
    J. S. Dahler, J. L. Franklin, M. S. B. Munson, and F. H. Field, J. Chem. Phys. 36, 3332 (1962).CrossRefGoogle Scholar
  80. 76.
    A. Henglein, Z. Naturforsch. 11a, 37 (1962).Google Scholar
  81. 77.
    Shuang-Ling Chong and J. L. Franklin, J. Chem. Phys. 54, 1487 (1972).CrossRefGoogle Scholar
  82. 78.
    M. Saporoschenko, J. Chem. Phys. 49, 768 (1968).CrossRefGoogle Scholar
  83. 79.
    S. F. Kasper and J. L. Franklin, J. Chem. Phys. 56, 1156 (1972).CrossRefGoogle Scholar
  84. 80.
    M. A. Haney and J. L. Franklin, Trans. Faraday Soc. 65, 1794 (1969).CrossRefGoogle Scholar
  85. 81.
    M. S. B. Munson and F. H. Field, J. Am. Chem. Soc. 87, 3294 (1965).CrossRefGoogle Scholar
  86. 82.
    M. Dump and J. Durup, in “Advances in Mass Spectrometry” (E. Kendrick, ed.), Vol. 4, p. 677, Institute of Petroleum, London (1968).Google Scholar
  87. 83.
    J. Durup and F. Hertz, J. Chim. Phys. 61, 470 (1964).Google Scholar
  88. 84.
    H. E. Stanton and S. Wexler, J. Chem. Phys. 44, 2959 (1966).CrossRefGoogle Scholar
  89. 85.
    J. L. Franklin and M. A. Haney, J. Phys. Chem. 73, 2857 (1969).CrossRefGoogle Scholar
  90. 86.
    J. L. Franklin, P. M. Hierl, and D. A. Whan, J. Chem Phys. 47, 3148 (1967).CrossRefGoogle Scholar
  91. 87.
    M. A. Haney and J. L. Franklin, J. Phys. Chem. 73, 4328 (1969).CrossRefGoogle Scholar
  92. 88.
    M. S. B. Munson, J. Am. Chem. Soc. 87, 2332 (1965).CrossRefGoogle Scholar
  93. 89.
    M. De Pas, J. J. Leventhal, and L. Friedman, J. Chem. Phys. 51, 3748 (1969).CrossRefGoogle Scholar
  94. 90.
    J. L. Beauchamp and S. E. Buttrill, J. Chem. Phys. 48, 1783 (1968).CrossRefGoogle Scholar
  95. 91.
    J. Long and M. S. B. Munson, J. Chem. Phys. 53, 1356 (1970).CrossRefGoogle Scholar
  96. 92.
    S.-L. Chong, R. A. Myers, and J. L. Franklin, J. Chem. Phys. 56, 2427 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • J. L. Franklin
    • 1
  1. 1.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations