General Linear Automata

  • A. A. Muchnik


Many problems in the theory of control systems reduce to the objects considered in the present paper -general linear automata. The necessity of studying them is manifested most clearly in the problem of reducing finite probabilistic automata [12, 13, 15, 19] which are an important particular case of general linear automata. On the other hand, many properties which apply to finite deterministic automata can be generalized successfully for the case of general linear automata, their proof turning out to be sometimes simpler than well-known proofs of analogous theorems for finite automata.


Terminal State Finite Automaton Multiple Experiment Input Symbol Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    K. Berge, Theory of Graphs and Its Applications [Russian translation], IL, Moscow (1962), Ch. 14, pp. 150–152oMATHGoogle Scholar
  2. 2.
    Yu. M. Borodyanskii, “Experiments with finite Moore automata,” Kibernetika, No. 6, pp. 18–27, Kiev (1965).Google Scholar
  3. 3.
    A. Hill, Introduction to the Theory of Finite Automata [Russian translation], Mir, Moscow (1966).Google Scholar
  4. 4.
    V. M. Glushkov, Synthesis of Digital Automata, Moscow, Fizmatgiz (1962).Google Scholar
  5. 5.
    N. E. Kobrinskii and B. A. Trakhtenbrot, Introduction to the Theory of Finite Automata [in Russian], Fizmatgiz, Moscow (1961), Chap. II, V, and VII.Google Scholar
  6. 6.
    A. D. Korshunov, “On the degree of distinguishability of automata,” in: Discrete Analysis, No. 10, Nauka, Novosibirsk (1967), pp. 39–60.Google Scholar
  7. 7.
    M. S. Lifshits, “On linear physical systems connected with the external world by communication channels,” Izvestiya Akad. Nauk SSSR, 27:993–1030 (1963).Google Scholar
  8. 8.
    M. S. Lifshits, “Open systems and linear automata,” Izvestiya, Akad. Nauk SSSR, 27:1215–1228 (1963).Google Scholar
  9. 9.
    A. A. Muchnik, “Length of an experiment for determining the structure of a finite strongly connected automaton,” in: Systems Theory Research, Vol. 20, Consultants Bureau, New York (1971), p. 136.Google Scholar
  10. 10.
    Ch. Faisi, On the Distinguishability of Infinite Automata (see this volume, pp. 219–222).Google Scholar
  11. 11.
    M. L. Tsetlin, “On nonprimitive networks,” in: Problemy Kibernetiki, Vol. 11, Fizmatgiz, Moscow (1958), p. 31.Google Scholar
  12. 12.
    G. Bacon, “Minimal-state stochastic finite-state systems,” Trans. IEEE, CT-ll:307–308 (1964).Google Scholar
  13. 13.
    J. W. Carlyle, “Reduced forms for stochastic sequential machines,” J. Math. Annal. Appl., 7:167–175 (1963).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    J. W. Carlyle, “On the external probability structure of finite-state channels,” Inf. Contr., 7:385–397 (1964).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    S. Even, Comments on the Minimization of Stochastic Machines, Res. Rep., SRRC-RR-64–50 (1964).Google Scholar
  16. 16.
    S. Ginsburg, “On the length of the smallest uniform experiment,” ACM Journal, 5(3):266–280 (1968).CrossRefGoogle Scholar
  17. 17.
    T. H. Hibbard, “Least upper bounds on minimal terminal-state experiments,” ACM Journal, 8(4):601–612 (1961).CrossRefGoogle Scholar
  18. 18.
    E.F. Moore, Gedanken-Experiments on Sequential Machines. Automata Studies, Princeton University Press (1956), pp. 129–153.Google Scholar
  19. 19.
    A. Paz, “Some aspects of probabilistic automata,” Inf. Contr., 9(l):26–60 (1966).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    M. O. Rabin, “Probabilistic automata,” Inf. Contr., Vol. 6, No. 3 (1963).Google Scholar
  21. 21.
    M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM Res. Dev., 3(2):114–125 (1959).MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. N. Raney, Sequential Functions, ACM Journ., 5(2):177–180 (1958).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    M. P. Schutzenberger, “On the definition of a family of automata,” Inf. Contr., 4:245–270 (1961).MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. P. Schutzenberger, “Finite counting automata,” Inf. Contr., 5:91–107 (1962).MathSciNetCrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1973

Authors and Affiliations

  • A. A. Muchnik
    • 1
  1. 1.MoscowRussia

Personalised recommendations