Nonrecurrent Codes with Minimal Decoding Complexity

  • A. A. Markov


Let U be a finite system of distinct words in the alphabet A, 𝔄 a free semigroup over A, [U] a subsemigroup of 𝔄, generated by the set U, and λ the empty word. By ||X|| we shall denote the number of elements of the set X, and by |x| the length of the word x.


System Versus Consultant Bureau Completeness Condition Finite System Empty Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Markov, “Alphabet coding,” Dokh Akad. Nauk SSSR, 132(3):521–523 (1960).Google Scholar
  2. 2.
    A. A. Markov, “Completeness condition for nonuniform codes,” Problemy Kibernetiki, 9:327–331, Fizmatgiz, Moscow (1963).Google Scholar
  3. 3.
    A. A. Markov, “Nonrecurrent coding,” Problemy Kibernetiki, 8:169–186, Fizmatgiz, Moscow (1962).Google Scholar
  4. 4.
    B. Mandelbrot, “On recurrent noise limiting coding,” Symposium on Information Networks, Polytechnic Institute of Brooklyn (1955).Google Scholar
  5. 5.
    M. Nivat, “Elements de la theorie generale des codes,” Automata Theory, Academic Press, New York-London (1966), pp. 278–294.Google Scholar
  6. 6.
    E.N. Gilbert and E. F. Moore, “Vari able-length binary encodings,” BSTJ, 38(4):933–967 (1959).MathSciNetGoogle Scholar
  7. 7.
    A. A. Sardinas and G. W. Patterson, “A necessary and sufficient condition for unique decomposition of coded messages,” Conv. Rec., Trans. IRE, IT-8:104–108 (1953).Google Scholar

Copyright information

© Consultants Bureau, New York 1973

Authors and Affiliations

  • A. A. Markov
    • 1
  1. 1.GorkiRussia

Personalised recommendations