Atomic and Molecular Collisions in the Plasma Boundary

  • M. F. A. Harrison


The objective of this paper is to provide an introduction to those aspects of atomic collision physics which underly the unavoidably generalised base of cross section data and scaling relationships which is currently employed in plasma modelling. Both experimental and theoretical methods are outlined and, where practicable, general trends in collisional behaviour are illustrated by examples of measured data. Atomic and molecular processes are considered on the basis of their particular relevance to the plasma edge region so that the discussion emphasises the properties of collisions in the regimes of low plasma temperature and low charge state of impurity ions. Nevertheless the basic concepts apply with equal validity throughout the plasma. Particular attention is devoted to recycling of hydrogen atoms and molecules because of its powerful influence upon plasma properties adjacent to boundary surfaces. References are selected with the objective of providing easy access to detailed reviews on topics which perforce cannot be included in this brief account. The method of presentation is firstly to discuss the general roles of atomic and molecular collisions in the plasma edge, then to identify the types of collision involved and subsequently to describe the methods adopted to calculate or measure the relevant cross sections. Cross section data are introduced in increasing order of the complexity of their atomic interactions. Finally the influence of the plasma environment upon atomic collision rates is discussed.


Charge Exchange Incident Electron Ionisation Cross Section Electron Collision Boundary Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.W. Drawin, Atomic and Molecular Processes in High-Temperature, Low-Density Magnetically Confined Plasmas, in Ref. 17, p.341.Google Scholar
  2. 2.
    M.F.A. Harrison, The Plasma Boundary and the Role of Atomic and Molecular Processes, in Ref. 17, p.441.Google Scholar
  3. 3.
    M.F.A. Harrison, Boundary Plasma, in Ref. 19, Vol. 2, p.395.Google Scholar
  4. 4.
    W. Grotian “Graphische Darstellung der Spektren von Atomen und Ionen mit zwei und drei Valenzelektronen”, Springer, Berlin (1928).CrossRefGoogle Scholar
  5. 5.
    K. Takayanagi and H. Suzuki, “Cross Sections for Atomic Processes, Vol.1. Processes involving Hydrogen Isotopes, their ions, electrons and photons”, English version of Report IPPJ-DT-48, Nagoya University, Institute of Plasma Physics, Nagoya (1978).Google Scholar
  6. 6.
    R. P. McWhirter and H. P. Summers, Atomic Radiation from Low Density Plasma, Ref.19, Vol.2, p.52.Google Scholar
  7. 7.
    D.R. Bates, A. Kingston and R.W. McWhirter, Proc. Roy. Soc. A267, 297, 1962.ADSCrossRefGoogle Scholar
  8. 8.
    R.K. Janev, D.E. Post, W.D. Langer, K. Evans, D.B. Heifetz and J.C. Weisheit, J.Nucl.Mater. 121: 10, (1984).ADSCrossRefGoogle Scholar
  9. 9.
    G. Herzberg, “Atomic Spectra and Atomic Structure”, Dover Publications, New York (1944).Google Scholar
  10. 10.
    C. Candler, “Atomic Spectra and the Vector Model”, Hilger and Watts, London (1964).Google Scholar
  11. 11.
    V.L. Jacobs, J. Davies, J.E. Rogerson and M. Blaha, Astrophys. J.230: 627 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    A.G. Gaydon, “Dissociation Energies and Spectra of Diatomic Molecules”, Chapman and Hall, London (1953).Google Scholar
  13. 13.
    C.F. Barnett, J.A. Ray and J.C. Thompson, “Atomic and Molecular Collision Cross Sections of Interest in Controlled Thermonuclear Research”, Report ORNL-3113 Oak Ridge National Laboratory, Oak Ridge (1964).Google Scholar
  14. 14.
    H.S.W. Massey, E.H.S. Burhop and H.B. Gilbody, “Electronic and Ionic Impact Phenomena”, Vols. 1 to 5, Oxford University Press, Oxford (1974).Google Scholar
  15. 15.
    E.W. McDaniel, “Collision Phenomenon in Ionized Gases”, John Wiley and Sons, New York (1964).Google Scholar
  16. 16.
    “Atomic and Molecular Processes in Controlled Thermonuclear Fusion” ed., M.R.C. McDowell and A.M. Ferendeci, NATO ASI, Bonas, France, Plenum Press, New York and London (1980).Google Scholar
  17. 17.
    “Atomic and Molecular Physics of Controlled Thermonuclear Fusion” ed., C.J. Joachain and D.E. Post, NATO ASI, Santa Flavia, Italy, Plenum Press, New York and London (1983).Google Scholar
  18. 18.
    “Physics of Ion-Ion and Electron-Ion Collisions, ed., F. Brouillard and J.W. McGowen, NATO ASI, Baddeck, Canada, Plenum Press, New York and London (1983).Google Scholar
  19. 19.
    “Applied Atomic Collision Physics” Vols. 1 to 5, ed., H.S.W. Massey, E.W. McDaniel and B. Bederson, Academic Press, New York and London (1983).Google Scholar
  20. 20.
    J. J. Thomson, Phil. Mag. 23: 419 (1912).Google Scholar
  21. 21.
    M. Born, Z. Physik, 38: 803 (1926).ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Bethe, Ann.Physik, 5: 325 (1930).ADSCrossRefMATHGoogle Scholar
  23. 23.
    C.J. Joachain, Theoretical Methods for Atomic Collisions — A General Survey, in Ref. 16, p.147 and Recent Progress in Theoretical Models of Atomic Collisions, in Ref. 17, p.139.Google Scholar
  24. 24.
    T. Kato, “Ionisation and Excitation of Ions by Electron Impact — Review of empirical formulae”, Report IPRJ-AM-2, Nagoya University, Institute of Plasma Physics, Nagoya (1978).Google Scholar
  25. 25.
    Y. Itikawa and T. Kato, “Empirical formulas for Ionisation Cross Section of Atomic Ions for Electron Collisions”, Report IPRJ-AM-17, Nagoya University, Institute for Plasma Physics, Nagoya (1981).Google Scholar
  26. 26.
    W. Lotz, Z. Phys. 220: 466 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    H. van Regemorter, Astrophys. J. 136: 906 (1962).ADSCrossRefGoogle Scholar
  28. 28.
    A. Burgess, Mem. Soc. Roy. Sci. Liege, 4: 299 (1961).Google Scholar
  29. 29.
    M.J. Seaton, Excitation and Ionisation by Electron Impact, p.375, in “Atomic and Molecular Irocesses” ed., D.R. Bates, Academic Press, New York (1962).Google Scholar
  30. 30.
    J.A. Gaunt, Phil. Trans. A229: 163 (1930).ADSCrossRefMATHGoogle Scholar
  31. 31.
    D.H. Crandall, Electron Ion Collisions, in “Atomic Physics of Highly Ionised Atoms”, ed. R. Marrus, NATO ASI, Cargese, Corsica, France, Plenum Press, New York and London (1982)Google Scholar
  32. 31a.
    D.H. Crandall, Electron Ion Collisions, in “Atomic Physics of Highly Ionised Atoms”, ed. R. Marrus also Report ORNL/TM-8453, Oak Ridge National Laboratory, Oak Ridge (1982).Google Scholar
  33. 32.
    D.H. Crandall, Electron Impact Excitation of Ions, in Ref. 13, p.201.Google Scholar
  34. 33.
    G.H. Dunn, Electron Ion Collisions in “Physics of Ionised Gases”, ed., H. Matie and B. Kidric, Inst. Nucl. Science, Belgrade (1980).Google Scholar
  35. 34.
    K.T. Dolder, Experimental Aspects of Electron Impact Ionisation and Excitation of Positive Ions, in Ref. 17, p.213.Google Scholar
  36. 35.
    W.L. Fite and R.T. Brackman, Ihys. Rev. 112: 1141 (1958).ADSCrossRefGoogle Scholar
  37. 36.
    K.T. Dolder, M.F.A. Harrison and P.C. Thonemann, Proc. Roy. Soc. A 264: 367 (1961).ADSCrossRefGoogle Scholar
  38. 37.
    M.F.A. Harrison, Colliding Beam Studies of Atomic Collision Processes, in “Low-energy Ion Beams”, p.190, ed. K.G. Stephens, I.H. Wilson and J.L. Moruzzi, Inst. Phys. Conf. Ser. No.38 (1978).Google Scholar
  39. 38.
    L.J. Kieffer and G.H. Dunn, Rev. Mod. Ihys. 38: 1 (1966).ADSCrossRefGoogle Scholar
  40. 39.
    F.J. De Heer, Experiments on Electron Capture and Ionisation by Ions, in Ref. 16, p.351 and Experiments on Electron Capture and Ionisation by Multiply Charged Ions, in Ref.17, p.269.Google Scholar
  41. 40.
    K.L. Bell, H.B. Gilbody, J.G. Hughes, A.E. Kingston and F.J. Smith, “Recommended Cross Sections and Rates for Electron Ionisation of Light Atoms and Ions”, Report CLM-R216, Culham Laboratory, Culham (1982).Google Scholar
  42. 41.
    P. Defrance, W. Claeys, A. Cornet and G. Poulaert, J.Phys.B: Atom. Molec. Phys. 14: 111 (1981).ADSCrossRefGoogle Scholar
  43. 42.
    R.G. Montague, M.J. Diserens and M.F.A. Harrison, J. Phys. B. 17: 2085 (1984).ADSCrossRefGoogle Scholar
  44. 43.
    J. McGuire, Phys. Rev. A 16: 73 (1977).ADSCrossRefGoogle Scholar
  45. 44.
    C.F. Barnett, J.A. Ray, E. Ricci, M.I. Wilker, E.W. McDaniel, E.W. Thomas and H.B. Gilbody, “Atomic Data for Controlled Fusion Research”. Reports ORNL-5260 (Vol. 1) and ORNL-5207 (Vol. 2), Oak Ridge National Laboratory, Oak Ridge (1977).Google Scholar
  46. 45.
    D.F. Dance, M.F.A. Harrison and A.C.H. Smith, Proc. Roy. Soc. A290: 74 (1966).ADSCrossRefGoogle Scholar
  47. 46.
    A. Burgess and M.C. Chidichimo, Mon. Not. R.A.S. 203: 1269 (1983).Google Scholar
  48. 47.
    D.F. Dance, M.F.A. Harrison, R.D. Rundel and A.C.H. Smith, Proc. Phys. Soc. 92: 577 (1967).ADSCrossRefGoogle Scholar
  49. 48.
    G.H. Dunn, J. Chem. Phys. 44: 2592 (1966).ADSCrossRefGoogle Scholar
  50. 49.
    F.J. de Heer, Physica Scripta, 23: 170 (1981).ADSCrossRefGoogle Scholar
  51. 50.
    B.H. Bransden, Theoretical Models for Charge Exchange, in Ref. 16, p.185 and The Theory of Charge Exchange and Ionistion by Heavy Articles, in Ref. 17, p.245.Google Scholar
  52. 51.
    R.K. Janev and B.H. Bransden, “Charge Exchange between Highly Charged Ions and Atomic Hydrogen: A Critical Review of Theoretical Data”, Report INDC (NDS)-135/GA, IAEA, Vienna (1982).Google Scholar
  53. 52.
    H.B. Gilbody, Physica Scripta, 24,: 712 (1981).ADSCrossRefGoogle Scholar
  54. 53.
    H.S.W. Massey, Rep. Prog. Phys. 12: 248 (1949).ADSCrossRefGoogle Scholar
  55. 54.
    J.B. Hasted in “Advances in Eectronics and Electron Physics” Vol. XIII, p.1, ed. L. Morton, Academic Press, New York (1960).CrossRefGoogle Scholar
  56. 55.
    R.E. Olson, A. Salop, P.A. Phaneuf and F.W. Meyer, Phys. Rev. A16: 1867 (1977).ADSCrossRefGoogle Scholar
  57. 56.
    P. Hvelplund and A. Andersen, Fhysica Scripta, 26: 370 (1982).ADSCrossRefGoogle Scholar
  58. 57.
    J.H. Newman, J.D. Cogan, D.L. Ziegler, D.E. Nitz, R.D. Rundel, K.A. Smith, R.F. Stebbings, Phys. Rev. A25: 2976 (1982).ADSCrossRefGoogle Scholar
  59. 58.
    P.T. Greenland, “Low Energy Charge Capture Cross Sections”, Report AERE-R11282, Atomic Energy Research Establishment, Harwell (1984).Google Scholar
  60. 59.
    W.L. Fite, A.C.H. Smith and R.F. Stebbings, Proc. Roy. Soc. A268: 527 (1963).ADSGoogle Scholar
  61. 60.
    R.F. Stebbings, A.C.H. Smith and H. Ehrhardt, in “Atomic Collision Processes”, p.814, ed. M.R.C. McDowell, North Holland, Amsterdam (1964).Google Scholar
  62. 61.
    G. Herzberg, “Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules”, D. van Nostrand Co. Inc. Princeton.Google Scholar
  63. 62.
    L. Landau, Z. Phys. Sowjet 2: 46 (1932)Google Scholar
  64. 62a.
    L. Landau and C. Zener, Proc. Roy. Soc. A137: 696 (1932).ADSCrossRefGoogle Scholar
  65. 63.
    D.A. Hobbis, P. Nickolson, M.F.A. Harrison and R.G. Montague, to be submitted to J. Phys. B.Google Scholar
  66. 64.
    A. Salop and R.E. Olson, Ihys. Rev. A13: 1312 (1976).ADSGoogle Scholar
  67. 65.
    R.K. Janev and P. Hevelplund, Comments in Atomic and Molecular Physics, XI, 75 (1981).Google Scholar
  68. 66.
    M. Buriaux, F. Brouillard, A. Joynaux, T. Govers and S. Szücs, J. Phys. B. 10: 2421 (1977).ADSCrossRefGoogle Scholar
  69. 67.
    D.R. Bates and A.E. Kingston, Planet and Space Science, 11: 1 (1963).ADSCrossRefGoogle Scholar
  70. 68.
    R.W. P. McWhirter and A. G. Hearn, Proc. Ihys. Soc. 82: 641 (1963).ADSCrossRefGoogle Scholar
  71. 69.
    R.J. Hutchinson and R.W. P. McWhirter, J. Ihys. B. 6: 2668 (1973).ADSCrossRefGoogle Scholar
  72. 70.
    F. Brouillard, Rydberg States, in Ref. 17, p.313.Google Scholar
  73. 71.
    G.W. Series, “The Spectrum of Atomic Hydrogen”, Oxford University Press, Oxford (1957).Google Scholar
  74. 72.
    H.W. Drawin, Phys. Rep. 37: 125 (1978).ADSCrossRefGoogle Scholar
  75. 73.
    H. P. Summers, “Tables and Graphs of Collisional Dielectronic Recombination and Ionisation Coefficients and Ionisation Equilibria of H-like to A-like Ions of Elements”, Appleton Laboratory Memo. IM 367, Appleton Laboratory, Culham (1974).Google Scholar
  76. 74.
    V.A. Abramov, in “USSR Contributions to the INTOR Phase-Two-A Workshop”, Report, Kurchatov Institute, Moscow (1982)Google Scholar
  77. 74a.
    V.A. Abramov, also “International Tokamak Reactor: Phase-Two-A”, p.215, International Atomic Energy Agency, Vienna (1983).Google Scholar
  78. 75.
    J. Neuhauser, W. Schneider, R. Wunderlich and K. Lackner, J. Nucl. Mater. 121: 195 (1984).CrossRefGoogle Scholar
  79. 76.
    H. P. Summers and R.W. P. McWhirter, J. Ihys. B. 12: 2387 (1979).ADSCrossRefGoogle Scholar
  80. 77.
    M. Shimada, M. Nagami, K. Ioki, S. Izumi, M. Maeno, H. Yokomizo, K. Shinya, H. Yoshida, N.H. Brooks, C.L. Hsieh, A. Kitsunezaki and N. Fujisawa, in “Japanese contribution to the INTOR Phase-Two-A Workshop”, Japan Atomic Energy Research Institute, Tokai-mura (1982).Google Scholar
  81. 78.
    R.V. Jensen, D.E. Post, W.H. Grasberger, C.B. Tarter and W.A. Lokke, Nucl. Fusion, 17: 1187 (1977).ADSCrossRefGoogle Scholar
  82. 79.
    D.E. Post, R.V. Jensen, C.B. Tarter, W.H. Grasberger and W.A. Lokke, At. Data and Nuc. Data Tables, 20: 397 (1977).ADSCrossRefGoogle Scholar
  83. 80.
    H.W. Drawin, Physica Scripta, 24: 622 (1981).ADSCrossRefGoogle Scholar
  84. 81.
    D.E. Post, The Role of Atomic Collisions in Fusion, in Ref. 18, p.37.Google Scholar
  85. 82.
    M.F.A. Harrison, The Relevance of Atomic Processes to Magnetic Confinement and the Concept of a Tokamak Reactor, in Ref. 16, p.15.Google Scholar
  86. 83.
    T.S. Green, Neutral Beam Formation and Transport, in Ref. 19, Vol. 2, p.339.Google Scholar
  87. 84.
    M.F.A. Harrison, Electron Impact Ionisation and Excitation of Positive Ions, in “Methods in Experimental Physics”, Vol. 7B, p. 95, ed. W.L. Fite and B. Bederson, Academic Press, New York (1968).Google Scholar
  88. 85.
    A. Chutjian and W.R. Newall, Phys. Rev. A26: 2271 (1982).ADSGoogle Scholar
  89. 86.
    K.T. Dolder and B. Peart, Rep. Prog. Phys. 39: 697 (1976).ADSCrossRefGoogle Scholar
  90. 87.
    H.J. Kunze, Space Sci. Rev. 13: 565 (1972).ADSCrossRefGoogle Scholar
  91. 88.
    A.H. Gabriel and C. Jordan, in “Case Studies in Atomic Collision Physics II”, p.209, ed. E.W. McDaniel and M.R.C. McDowell, North-Holland Publishing Co., Amsterdam (1972).Google Scholar
  92. 89.
    CIAMDA 80, “An Index to the Literature of Atomic and Molecular Collision Data Relevant to Fusion Reseach, International Atomic Energy Agency, Vienna, Austria (1980).Google Scholar
  93. 90.
    “Research Coordination Meetings on Atomic Collision Data for Diagnostics of Magnetic Fusion Plasmas”: First Meeting: IAEA Report, INDC(NDS)-136/GA (1982).Google Scholar
  94. 90a.
    “Research Coordination Meetings on Atomic Collision Data for Diagnostics of Magnetic Fusion Plasmas”: Second Meeting: IAEA Report, INDC(NDS)-150/GA (1984).Google Scholar
  95. 90b.
    “Research Coordination Meetings on Atomic Collision Data for Diagnostics of Magnetic Fusion Plasmas”: Third Meeting: IAEA Report, INDC(NDS)-160/GA (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. F. A. Harrison
    • 1
  1. 1.Culham LaboratoryUKAEA/Euratom Fusion AssociationAbingdon, OxonEngland

Personalised recommendations