Impurity Control Systems for Reactor Experiments

  • D. E. Post
  • R. F. Mattas


Poloidal divertors and pumped limiters are the leading candidates for impurity and particle control systems for reactor tokamak experiments. Such systems must be able to provide heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (~ 1 year), and (3) minimum size and cost and maximum simplicity. While pumped limiter systems are simpler and cheaper, poloidal divertors offer the possibility of low sputtering rates for the first wall components and modest pumping requirements due to the formation of a cool, dense plasma near the collector plates. Estimates made as part of the INTOR study indicate that the sputtering rates for pumped limiters could be unacceptably large. Both types of systems should be able to provide adequate pumping. Engineering design studies have been carried out for both systems. The study for a poloidal divertor system for INTOR indicates that such a system offers a reasonable solution to the impurity control problem at only a modest increase in total reactor cost (~10%) and complexity compared to a pumped limiter system.


Particle Flux Impurity Control Plasma Edge Collector Plate Main Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdou, M., et al., “Impurity Control and First Wall Engineering,” FED-INTOR/ICFW/82–17, U.S. FED-INTOR Activity and U.S. Contribution to the International Tokamak Reactor Phase-2A Workshop (1982).Google Scholar
  2. Adamson, R., Bells, W., and Kelly, P., J. Nucl. Mater. 92, (1980), 149.ADSCrossRefGoogle Scholar
  3. Adda, Y., Radiation Induced Voids in Metals, J. W. Corbett and L. C. Ianniello, Eds., CONF-710601 (1972) 31.Google Scholar
  4. Anderson, H., and Bay, H., in Sputtering by Particle Bombardment I, edited by R. Behrisch, Springer-Verlag (1981)Google Scholar
  5. Anderson, H., and Bay, H. J. Nucl. Mater. 93–94 (1980) 625.ADSCrossRefGoogle Scholar
  6. Bartlett, A., Evans, J., Eyre, B., Terry, E., and Williams, T., in Proceedings of International Conference on Radiation Effects and Tritium Technology for Fusion Reactors1976, Vol. I, p. 122.Google Scholar
  7. Bentley, J., and Wiffen, F., Nucl. Tech. 30, (1976) 376.Google Scholar
  8. Bieger, W., Dippel, K. H., Fuchs, G., and Wolf, G., Sumposium on Plasma-Wall Interactions, Julich (1976).Google Scholar
  9. Blewitt, T., Oak Ridge National Laboratory Report, ORNL-2614 (1958) 64.Google Scholar
  10. Blewitt, T., Oak Ridge National Laboratory Report, ORNL-2614 (1958) 64.Google Scholar
  11. Bol, K., Arunaslam, V., Bitter, M., Boyd, D., Brau, K., et al., Plasma Physics and Controlled Nuclear Fusion Research 1978, Vol. 1, 11, IAEA, Vienna, 1979.Google Scholar
  12. Braams, B., Harbour, P., Harrison, M., Hotston, E., and Morgan, J., J. Nucl. Mater. 121 (1983) 75.CrossRefGoogle Scholar
  13. Brimhall, J., and Kissinger, H., Radiation Ef fects 15 (1972) 259.CrossRefGoogle Scholar
  14. Brooks, J., Mattas, R., Hassanein, A., and Baskes, M., J. Nucl. Mater. 128&129 (1984) 400.ADSCrossRefGoogle Scholar
  15. Brooks, J. N., Baker, C. C., Stevens, H. C., Trachsel, C. A., in Ref. 5Google Scholar
  16. Budny, R., et al., J. Nucl. Mater. 121 (1984) 294.ADSCrossRefGoogle Scholar
  17. Burrell, K., et al., Controlled Fusion and Plasma Physics, Proc. 11th European Conference., Aachen, 1983, Vol. 1, European Phys. Soc. (1983) 11.Google Scholar
  18. Bush, S., Irradiation Effects in Cladding and Structural Materials, American Society for Metals (1965).Google Scholar
  19. Carlander, R., Harkness, S., and Santhanam, A., “Effects of Radiation on Substructure and Mechanical Properties of Metals and Alloys,” Americal Society for Testing and Matls. (1973) 399, ASTM-STP 529.Google Scholar
  20. Carpenter, G., and Fleck, R., “Electron Irradiation Damage in Beryllium in a High Voltage Electron Microscope,” Paper 26 in Beryllium 1977.Google Scholar
  21. Cohen, S., et al., J. Nucl. Mater. 128&129 (1984) 430.ADSCrossRefGoogle Scholar
  22. Conn, R., J. Nucl. Mater. 128 & 129 (1984) 407.ADSCrossRefGoogle Scholar
  23. Conn, R. W., Sviatoslavsky, I. N., Sze, D. K., Proc. 8th Symposium Engineering Problems in Fusion Research, San Francisco (1979).Google Scholar
  24. Engelhardt, W., Becker, G., Behringer, K., Campbell, D., Eberhagen, A., et al., J. Nucl. Mater. 111&112 (1982) 337.ADSCrossRefGoogle Scholar
  25. Evans, K., et al., J. Nucl. Mater. 128&129 (1984) 452.ADSCrossRefGoogle Scholar
  26. Fonck, R., Bell, M., Bol, K., Brau, K., Budny, R., et al., J. Nucl. Mater. 111&112 (1982) 343.ADSCrossRefGoogle Scholar
  27. Fujisawa, N., et al., J. Nucl. Mater. 128&129 (1824) 61.CrossRefGoogle Scholar
  28. Gold, R., and Ammon, R., ADIP Quarterly Progress Report, DOE/ER-0045/6 (1981) p. 96.Google Scholar
  29. Gold, R., ADIP Semianual Progress Report, DOE/ER/0045/7 (1981) 122.Google Scholar
  30. Heifetz, D., et al., J. Comput. Phys. 42 (1982) 309.ADSCrossRefGoogle Scholar
  31. Heifetz, D., et al., J. Nucl. Mater. 111&112 (1982) 2981.CrossRefGoogle Scholar
  32. Heifetz, D., Post, D., Ulrickson, M., and Schmidt, J., J. Nucl. Mater. 111&112 (1982b) 298.ADSCrossRefGoogle Scholar
  33. Igitkhanov, Yu. L., et al., Plasma Physics and Controlled Fusion Research 1984, IAEA, Vienna.Google Scholar
  34. INTOR, Phase II-A, Part I, IAEA, Vienna, 1983.Google Scholar
  35. Jensen, R., Post, D., and Jassby, D., Nucl. Sci./Eng. 65 (1978) 282.Google Scholar
  36. Kangilaski, Radiation Effects Design Handbook, Structural Alloys, Section 7, NASA CR-1873 (1971)Google Scholar
  37. Kaye, S., Bell, M., Bol, K., Boyd, D., Brau, K., et al., J. Nucl. Mater. 121 (1984) 115.ADSCrossRefGoogle Scholar
  38. Kelly, G. G., ORMAK II/TTF Design Memo No. 17 (1974).Google Scholar
  39. Labbe, M., and Poirier, J., J. Nucl. Mater. 46 (1973) 86.ADSCrossRefGoogle Scholar
  40. Lackner, K., and Keilhacker, M., J. Nucl. Mater. 128>129 (1984) 368.ADSCrossRefGoogle Scholar
  41. Mahdavi, M., Armentrout, C., Blau, F., Bramson, G., Brooks, N., et al., J. Nucl. Mater. 111&112 (1982) 355.ADSCrossRefGoogle Scholar
  42. Mahdavi, M., Eames, D., Brown, B., Davis, L., Helton, F., et. al., J. Nucl. Mater. 128&129 (1984) 466.ADSCrossRefGoogle Scholar
  43. Mattas, R., Wiedersich, H., Atteridge, D., Johnson, A., and Remark, J., in Proceedings of the 2nd Topical Meeting on th Technology of Controlled Nuclear Fusion 1977, CONF-760935-P1, Vol. 1, p. 199.Google Scholar
  44. Mattas, R. F., Smith, D., and Adbou, M., J. Nucl. Mater. 122&123 (1984) 66.ADSCrossRefGoogle Scholar
  45. Mattas, R., et al., U.S. Contribution to INTOR Phase IIA, Part 2, Impurity Control and First Wall Engineering, 1985.Google Scholar
  46. Mills, R. G., et al., “A Fusion Power Plant,” MATT-1050, Princeton Plasma Physics Laboratory, Princeton, New Jersey, 1974.Google Scholar
  47. Mioduszewski, P., this volume.Google Scholar
  48. Mioduszewski, P., J. Nucl. Mater. ?? (1982) 253.Google Scholar
  49. Mioduszewski, P., Emerson, L., Simpkins, J., Wootton, A., Bush, C., et al., J. Nucl. Mater. 121 (1984) 285.ADSCrossRefGoogle Scholar
  50. Mioduszewski, P., J. Nucl. Mater. 111&112 (1982) 253.ADSCrossRefGoogle Scholar
  51. Murphy, M., Fatigue of Engineering Materials and Structures 4 (1981) 199.CrossRefGoogle Scholar
  52. Nagami, M., Fujisawa, N., Ioki, K., Kitsunezaki, A., Konoshima, S., et al., Plasma Physics and Controlled Nuclear Fusion Research 1980, Vol. II, IAEA, Vienna (1981) 367.Google Scholar
  53. Nagami, M., et al., Nucl. Fusion 24 (1984) 183.CrossRefGoogle Scholar
  54. Ohyabu, N., Nucl. Fusion 21 (1981) 5.CrossRefGoogle Scholar
  55. Petravic, M., Post, D., Heifetz, D., and Schmidt, J., Phys. Rev. Lett. 48 (1982) 326.ADSCrossRefGoogle Scholar
  56. Petravic, M., Heifetz, D., Heifetz, S., and Post, D., J. Nucl. Mater. 128&129 (1984a) 91.ADSCrossRefGoogle Scholar
  57. Petravic, M., Heifetz, D., Kuo-Petravic, G., and Post, D., J. Nucl. Mater. 128&129 (1984b) 111.ADSCrossRefGoogle Scholar
  58. Petravic, M., Heifetz, D., and Post, D., Plasma Physics and Controlled Nuclear Fusion Research 1985, IAEA, Vienna, Vol. 2.Google Scholar
  59. Pontau, A., et al., J. Nucl. Mater. 121 (1984) 304.ADSCrossRefGoogle Scholar
  60. Post, D., for the INTOR Group, “Impurity and Particle Control for INTOR,” Plasma Physics and Controlled Nuclear Fusion Research 1984, IAEA, Vienna, 1985.Google Scholar
  61. Post, D., and Lackner, K., this volume.Google Scholar
  62. Roth, J., Bohdansky, J., and Ottenberger, W., Max Planck Institut fur Plasmaphysik, IPP (1979), Report No. IPP-9/26.Google Scholar
  63. Santhanam, A., Taylor, A., and Harkness, S., Nucl. Mater. 18 (1973) 302.Google Scholar
  64. Schneider, W., Heifetz, D., Lackner, K., Neuhauser, J., Post, D., and Rauh, K., J. Nucl. Mater. 121 (1984) 178.ADSCrossRefGoogle Scholar
  65. Sengoku, S., et al., Nucl. Fusion 24 (1984) 415.CrossRefGoogle Scholar
  66. Shimada, M., and the JAERI Team, J. Nucl. Mater. 121 (1984) 184.ADSCrossRefGoogle Scholar
  67. Singer, C., and Braams, B. (private communication, 1985).Google Scholar
  68. Stangeby, P., this volume.Google Scholar
  69. Sugihara, M., Saito, S., Hitoki, S., and Fukisawa, N., J. Nucl. Mater. 128&129 (1984) 114.ADSCrossRefGoogle Scholar
  70. Tanaka, M., Bloom, E., and Horak, J., J. Nucl. Mater. 103&104 (1981) 895.CrossRefGoogle Scholar
  71. Van Witzenburg, W., Mastenbroek, A., and Elen, J., J. Nucl. Mater. 104 (1981) 1187.ADSCrossRefGoogle Scholar
  72. Vernicke, H., Blaumoser, M., Ennen, K., Gruber, J., Gruber, O., et al., J. Nucl. Mater. 128&129 (1984) 71.ADSCrossRefGoogle Scholar
  73. Vershkov, V. A., and Mirnov, S. V., Princeton Plasma Physics Laboratory Report MATT-Trans. 113 (1973);Google Scholar
  74. Vershkov, V. A., and Mirnov, S. V. Nucl. Fusion 14 (1974) 383.CrossRefGoogle Scholar
  75. Wagner, F., et al., Phys. Rev. Lett. 49 (1982) 1408.ADSCrossRefGoogle Scholar
  76. Wagner, F., and Lackner, K., in Physics of Plasma Wall Interactions in Controlled Fusion, eds. D. Psot and R. Behrisch, Plenum Press, 1985, NATO ASI Series.Google Scholar
  77. Wiffen, F., ADip Semiannual Progress Report, DOE/ER-0045/7 (1981) 145.Google Scholar
  78. Wiffen, F., ADIP Quarterly Progress Report, DOE/ET-0058/1 (1978) 142.Google Scholar
  79. Wiffen, F., in Defects and Defect Clusters in BCC Metals and Their Alloys, Nucl. Metallurgy, 18 (1973) 179.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. E. Post
    • 1
  • R. F. Mattas
    • 2
  1. 1.Plasma Physics LaboratoryPrinceton UniversityPrincetonUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations