Plasma Wall Interactions in Heated Plasmas

  • J. Tachon


With the development of larger, more powerful magnetic confinement devices, the study of plasma-wall interactions becomes increasingly relevant to the controlled thermonuclear fusion program. To increase the plasma temperature in Tokamaks from the value reached by ohmic heating (1 – 2 keV), toward the value necessary for self sustaining fusion reactions (5 – 10 keV) requires a tremendous amount of additional power. This is achieved either by the injection of high energy neutral particles — called neutral beam injection (NBI) - or by high frequency electromagnetic radiation — also called radiofrequency heating (RF). In recent experiments the amount of power introduced by these “additional heating” schemes, greatly exceeds the ohmic power (in JET, PNBI + PRF = 25 MW, POH = 2 MW). While substantially increasing the energy density of the plasma a new set of problems are introduced which are associated with the increased plasma wall interactions due to additional heating.


Vacuum Vessel Metallic Impurity Neutral Beam Injection Light Impurity Lower Hybrid Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.H. Edmonds et al; Proc. of the 3rd Joint Varenna. Grenoble Int. Symp on Heating in Toroidal plasmas, Grenoble (1982) Vol I, 5Google Scholar
  2. 2.
    K.W. Ehlers Proc. Int. Ion Eng. Congress ISIAT 83, Kyoto (1983) p 59–69Google Scholar
  3. 3.
    J.F. Bonnal et al, Phys. Lett. 75A (1979) 65ADSGoogle Scholar
  4. 4.
    Y. Okumura et al, Rev. Sci. Instrum. 52 (1), Jan 1981, 1ADSCrossRefGoogle Scholar
  5. 5.
    A. Colleraine et al, Ibid Ref 1 Vol I, 49Google Scholar
  6. 6.
    W. Ott et al, Rev. Sci. Instrum. 54(1), Jan 1983, 50ADSCrossRefGoogle Scholar
  7. 7.
    M. Delaunay et al, Ibid Ref. 1 Vol I, 143Google Scholar
  8. 8.
    W. Ateam, in Plasma Physics and Controlled Nuclear Fusion Research 1982 (Proc. 9th Int Conf Baltimore) Vol II, IAEA, Vienna (1983), 241Google Scholar
  9. 8a.
    F.P. Penningsfeld et al Proc of the 4 Symp. on Heating Toroidal plasmas Rome March 84.Google Scholar
  10. 9.
    W. Ott et al, Ibid Ref 1 Vol III, 813Google Scholar
  11. 10.
    G.G. Lister et al, Ibid Ref 1, Vol I, 103Google Scholar
  12. 11.
    P.C. Johnson et al, in Controlled Fusion and Plasma Physics (Proc 11 th Europ Conf. Aachen 1983) Vol II, Paper C 36.Google Scholar
  13. 12.
    TFR Group, Journal of Nucl. Mat. 105(1) Jan 1982, 62CrossRefGoogle Scholar
  14. 13.
    K. Behringer et al, in Proc. IAEA Technical Committee Meeting on Divertors and Impurity Control (Keilhac-ker, Max Planck-Inst für Plasma Physik Garching (1981) 42).Google Scholar
  15. 14.
    C.E. Bush et al Nucl. Fusion 23 (1) 1983, 67CrossRefGoogle Scholar
  16. 15.
    S. Suckewer et al, PPPL 1768 (1981)Google Scholar
  17. 16.
    R.C. Isler et al, Ibid Ref 1, Vol III 1185Google Scholar
  18. 17.
    W.H.M. Clark et al, Nucl. Fusion 22(3) 1982 333ADSCrossRefGoogle Scholar
  19. 18.
    R.J. Fonck, Phys. Rev. Letters 49 (10) 1982, 737ADSCrossRefGoogle Scholar
  20. 19.
    J. Jacquinot et al, Proc 11th Symp. on Fusion Techn., Oxford Sept 80.Google Scholar
  21. 20.
    A. de Chambrier et al, Ibid Ref 1, Vol I, 161Google Scholar
  22. 21.
    Equipe TFR, Plasma Phys 24 (1982) 615.CrossRefGoogle Scholar
  23. 22.
    JFT2 Group, Ibid Ref 1, Vol III, 1191Google Scholar
  24. 23.
    Colestock, P, IAEA Technical Committee, Princeton Oct 81Google Scholar
  25. 24.
    Hwang, D.R. et al. Ibid Ref 8, Vol II, 3Google Scholar
  26. 25.
    R. Behn et al, Plasma Phys and Control Fus 26 (1984) 173.ADSCrossRefGoogle Scholar
  27. 26.
    B.C. Stratton et al, to be submitted to Nucl. FusGoogle Scholar
  28. 27.
    Equipe TFR, Ibid Ref 25, p 165Google Scholar
  29. 28.
    J. Hosea et al, in Plasma Physics and Controlled Nuclear Fusion Research 1980 (Proc. 8th Int. Conf. Bruxelles) Vol II, IAEA Vienna (1981) 95.Google Scholar
  30. 29.
    Manos, D.M. et al. J. Nucl. Mater 111 and 112 (1982) 130.CrossRefGoogle Scholar
  31. 30.
    Kaïta R et al Nucl. Fusion 23 (1983) 1089CrossRefGoogle Scholar
  32. 31.
    Equipe TFR, Ibid ref 28, Vol I, 425Google Scholar
  33. 32.
    J.K Gimzewski et al, Ibid ref 11, Vol II, 85, 463Google Scholar
  34. 33.
    Equipe TFR, Ibid ref 1, Vol 1, 225Google Scholar
  35. 34.
    TFR Group, Nucl. Fusion 22 (1982) 956CrossRefGoogle Scholar
  36. 35.
    G. Tonon et al, 3rd Int. Congress Waves and Inst. Palaiseau, France 1977 -C6–161Google Scholar
  37. 36.
    G. Tonon et al, Ibid ref 8, Vol I, 179Google Scholar
  38. 37.
    M. Porkolab et al, Ibid ref 8, Vol I, 227Google Scholar
  39. 38.
    F. Alladio et al, Ibid ref 25, 157Google Scholar
  40. 39.
    G. Gormezano, Ibid ref 1, Vol III, 1129Google Scholar
  41. 40.
    G. Gormezano, Ibid ref 1, Vol III, 1141Google Scholar
  42. 41.
    G. Melin, Ibid ref 1, Vol III, 1160Google Scholar
  43. 42.
    E. Marmar et al, PFC/JA-83–87 (Nov 83)Google Scholar
  44. 43.
    M. Clement et al Proc. of the 4th Int. Symp. on Heating in Toroidal plasmas Rome.March 1984.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Tachon
    • 1
  1. 1.Association Euratom — Cea Sur La Fusion, Département de Recherches sur la Fusion ContrôléeCentre d’Etudes NucléairesFontenay-aux-RosesFrance

Personalised recommendations