Skip to main content

Abstract

A future tokamak reactor has to fulfill several requirements: good confinement properties to achieve ignition at low external heating power; high stability at minimal toroidal magnetic field strength; and efficient helium removal from the system for continuous burn. These conditions have to be met under circumstances, where the material, surrounding the burning plasma, is loaded to its limits. During steady state burn the first wall will be exposed to neutron fluxes of about 3 MW/m2. Additionally 600 MW is deposited into the plasma by the fusion α-particles, conducted to the plasma boundary and has to be removed from there at a tolerable power density. The wall is further exposed to a He-flux of 1.2 • 1021 s-1 and a deuterium and tritium flux which is about a factor of 20 larger. An implication of these figures is that several tens of tons of wall material are eroded and re-deposited during one year of reactor operation /1/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kotzlowski, et al., Jour. Nucl. Mat. 93/94, 442 (1980).

    Article  ADS  Google Scholar 

  2. W. Feneberg, Phys. Lett. A, 36 (1971) 125.

    Article  ADS  Google Scholar 

  3. F. Karger, K. Lackner, Phys. Lett. A, 61 (1977) 385.

    Article  ADS  Google Scholar 

  4. W. Feneberg, G.H. Wolf, Nucl. Fus. 21 (1981) 669.

    Article  Google Scholar 

  5. De Grassie, et al., Jour. Nucl. Mat. 128/129 (1984) to be published.

    Google Scholar 

  6. Princeton Plasma Physics Annual Report MATT-Q-21 (1963) p. 7.

    Google Scholar 

  7. P. E. Stott, C.M. Wilson, A. Gibson, Nucl. Fus. 17 (1977) 481.

    Article  ADS  Google Scholar 

  8. P. J. Harbour, et al., as ref. /5/.

    Google Scholar 

  9. M. Keilhacker, et al., in Plasma Phys. and Contr. Nucl. Fus. Research 1980 (Proc. 8th Intern. Conf. Brussels) Vol. 2, IAEA, Vienna (1981), 351.

    Google Scholar 

  10. D. Meade, et al., ibid, Vol. 1, 665.

    Google Scholar 

  11. M. Nagami, et al., ibid, Vol. 2, 367.

    Google Scholar 

  12. N. Ohyabu, et al., Nucl. Fusion 23 (1983), 295.

    Article  Google Scholar 

  13. O. Gruber, et al., Jour. Nucl. Mat. 121 (1984), 407.

    Article  ADS  Google Scholar 

  14. INTOR, Japanese Contrib. to the 3rd Meeting of the INTOR Workshop, 16–28 June 1980, IAEA, Vienna.

    Google Scholar 

  15. O. Gruber, K. Lackner, Proc. 11th Europ. Conf. on Contr. Fusion and Plasma Physics, Aachen 1983, Vol. 2, 443.

    Google Scholar 

  16. G. Laval, R. Pellat, J. S. Soule, Phys. Fluids 17 (1974) 835.

    Article  ADS  Google Scholar 

  17. M. D. Rosen, Phys. Fluids 18 (1975) 482.

    Article  ADS  Google Scholar 

  18. G. Becker, K. Lackner, in Plasma Physics and Contr. Nucl. Fus. Research 1976 (Proc. 6th Intern. Conf. Berchtesgaden) Vol. 2, IAEA, Vienna (1977), 401.

    Google Scholar 

  19. F. Schneider, Proc. 9th Symp. Eng. Problems of Fusion Research, (1981), Vol. I, p. 503.

    Google Scholar 

  20. H. Yokomizo, et al., “Plasma Physics and Controlled Nuclear Fusion Research 1982”, Vol. III, IAEA, Vienna (1983) 173.

    Google Scholar 

  21. D. L. Dimock, et al., Nucl. Fusion 13 (1973) 271.

    Article  Google Scholar 

  22. F. Wagner, J. Vac. Sci. Technol. 20 (1982) 1211.

    Article  ADS  Google Scholar 

  23. M. H. Hughes, and D. E. Post, Jour. of Comp. Phys. 28 (1978) 43.

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Wagner, “Investigation of Limiter Recycling in the Divertor Tokamak ASDEX”, Report IPP-III/71 (Garching) 1981.

    Google Scholar 

  25. G. Proudfoot, and P.J. Harbour, as Ref. 1, p. 413.

    Google Scholar 

  26. S. J. Fielding, and A.J. Wootton, as Ref. 1, p. 226.

    Google Scholar 

  27. S. J. Fielding, et al., Jour. Nucl. Mat. 76/77 (1978) 273.

    Article  ADS  Google Scholar 

  28. G. Haas, et al., Jour. Nucl. Mat. 121 (1984) 151.

    Article  Google Scholar 

  29. ASDEX-Team, presented by F. Wagner, Proceedings of IAEA Technical Committee Meeting on Divertors and Impurity Control, Garching, July 1981, p. 40.

    Google Scholar 

  30. G. Haas, et al., Proc. 9th Symp. on Fusion Technology (1976), p. 73.

    Google Scholar 

  31. Y. Shimomura, et al., Nucl. Fusion 23 (1983), 869.

    Article  Google Scholar 

  32. G. Fußmann, et al., as Ref. 5 and Z. Szymanski, private communication.

    Google Scholar 

  33. H. Vernickel, et al., Jour. Nucl. Mater. 111/112 (1982), 317.

    Article  ADS  Google Scholar 

  34. M. Shimada, et al., Nucl. Fusion 22 (1982) 643.

    Article  Google Scholar 

  35. E. R. Müller, et al., Nucl. Fusion 22 (1982) 1651.

    Article  Google Scholar 

  36. E. B. Meservey, et al., as Ref. 1, p. 267.

    Google Scholar 

  37. E. R. Müller, et al., as Ref. 28, p. 138.

    Google Scholar 

  38. P. E. Stott, et al., Nucl. Fusion 15 (1975) 431.

    Article  ADS  Google Scholar 

  39. M. Keilhacker, et al., as Ref. 20, p. 183.

    Google Scholar 

  40. H. D. Murmann, and M. Huang, “Thomson Scattering Diagnostic in the Boundary Layer of ASDEX”, Report IPP-III/95 (Garching) 1983.

    Google Scholar 

  41. Contributions of D. Post, K. Lackner and of C.E. Singer

    Google Scholar 

  42. M. A. Mahdavi, et al., Phys. Rev. Lett. 47 (1981) 1602.

    Article  ADS  Google Scholar 

  43. L. Spitzer, “Physics of Fully Ionized Gases”, John Wiley and Jones Inc., New York (1962).

    Google Scholar 

  44. W. Engelhardt, et al., as Ref. 33, p. 343.

    Google Scholar 

  45. M. Keilhacker, et al., Physica Scripta, Vol. T2/2, (1982) 443.

    Article  ADS  Google Scholar 

  46. P. J. Harbour, and M. F. Harrison, Nucl. Fusion 19 (1979) 695.

    Article  ADS  Google Scholar 

  47. M. Shimada, et al., as Ref. 5.

    Google Scholar 

  48. D. K. Owens, et al., as Ref. 1, p. 213.

    Google Scholar 

  49. W. Engelhardt, and W. Feneberg, as Ref. 27, p. 518.

    Google Scholar 

  50. K. Behringer, et al., as Ref. 29, p. 42.

    Google Scholar 

  51. G. Fußmann, et al., as Ref. 28, p. 164

    Google Scholar 

  52. J. Neuhauser, et al., Nucl. Fusion 24 (1984) 39.

    Article  Google Scholar 

  53. B. Schweer, et al., as Ref. 5, p. 71

    Google Scholar 

  54. F. Wagner, et al., Proc. 3rd All Union Conf. on High Temperature Plasma Diagnostics, Dubna 1983.

    Google Scholar 

  55. F. Wagner, to be published.

    Google Scholar 

  56. K. Behringer, private communication.

    Google Scholar 

  57. W. Schneider, et al., as Ref. 28, p. 178.

    Google Scholar 

  58. H. F. Dylla, Jour. Vac. Sci. Technol. 20 (1982) 119

    Article  ADS  Google Scholar 

  59. W. Poschenrieder, private communication.

    Google Scholar 

  60. M. Shimada, et al., Phys. Rev. Lett. 47 (1981) 796.

    Article  ADS  Google Scholar 

  61. J. C. DeBoo, et al., Nucl. Fusion 22 (1982) 572.

    Article  Google Scholar 

  62. P. K. Mioduszewski, this conference.

    Google Scholar 

  63. W. Lotz, Astrophys. J. Suppl. Ser. 14 (1967) 207.

    Article  ADS  Google Scholar 

  64. H. F. Dylla, et al., as Ref. 33, p. 211.

    Google Scholar 

  65. M. G. Bell, et al., as Ref. 5.

    Google Scholar 

  66. H. F. Dylla, et al., as Ref. 5.

    Google Scholar 

  67. S. Sengoku, et al., Nucl. Fusion 24 (1984) 415.

    Article  Google Scholar 

  68. O. Klüber, and H. D. Murmann, “Energy Confinement in the Tokamak Devices Pulsator and ASDEX”, Report IPP III-72, Garching (1982).

    Google Scholar 

  69. H. Eubank, et al., Phys. Rev. Lett. 43 (1979) 270.

    Article  ADS  Google Scholar 

  70. F. Wagner, et al., as Ref. 20, p. 43.

    Google Scholar 

  71. F. Wagner, et al., Phys. Rev. Letters 49 (1983) 1408.

    Article  ADS  Google Scholar 

  72. S. M. Kaye, et al., “Controlled Fusion and Plasma Physics” (Proc. 11th Europ. Conf. 1983), p. 19.

    Google Scholar 

  73. M. Nagami, et al., Nucl. Fusion 24 (1984) 183.

    Article  Google Scholar 

  74. F. Wagner, et al., to be published in Phys. Rev. Lett.

    Google Scholar 

  75. F. Wagner, et al., as Ref. 28, p. 103.

    Google Scholar 

  76. Y. Shimomura, et al., as Ref. 5

    Google Scholar 

  77. H. Vernickel, et al., as Ref. 5.

    Google Scholar 

  78. D. M. Meade, as Ref. 29, p. 1.

    Google Scholar 

  79. U. Daybelge, Nucl. Fusion 21 (1981) 1589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Wagner, F., Lackner, K. (1986). Divertor Tokamak Experiments. In: Post, D.E., Behrisch, R. (eds) Physics of Plasma-Wall Interactions in Controlled Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0067-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0067-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0069-5

  • Online ISBN: 978-1-4757-0067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics