As fusion devices move toward scientific breakeven and beyond that to ignition, the demands placed upon the limiter and divertor plates become more severe. The design of these devices depends upon a careful balance between plasma edge processes and material thermal, mechanical, and electromagnetic properties. The insertion of a limiter or divertor plate in the plasma edge causes a large perturbation of the edge. The physics of the plasma limiter interaction is discussed in great detail in other chapters and will not be discussed here so that emphasis can be placed on the techniques used to design limiters and divertor plates. The difficulty in the design of a limiter or divertor plate lies in the simultaneous satisfaction of all the constraints imposed by real materials and geometries within the allowed boundaries of the physics of the plasma edge. The uncertainties in the plasma edge properties makes optimization of any design more difficult because some constraints are poorly defined. The purpose of this chapter is to present the basic physical principles that are important for the design of limiters and divertor plates. The methods used to find a solution within the constraints will be described.


Heat Flux Particle Flux Vacuum Vessel Toroidal Field Plasma Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. O. Overskei, “Efficiency of Passive-Limiter Pumping of Neutral Particles,” Phys. Rev. Lett. 46 (1981) 177.ADSCrossRefGoogle Scholar
  2. 2.
    T. Taylor, N. Brooks, K. Ioki, “Changes in Limiter Surface Temperature Profiles for Small Radius Plasmas in D-III,” J. Nucl. Mater. 111&112 (1982) 569.ADSCrossRefGoogle Scholar
  3. 3.
    P. Mioduszewski, “Experimental Studies on Pump Limiters,” J. Nucl. Mater. 111&112 (1982) 253.ADSCrossRefGoogle Scholar
  4. 4.
    R. Fonck, M. Bell, K. Bol et al., “Impurity Levels and Power Loading in the PDX Tokamak with High Power Neutral Beam Injection,” J. Nucl. Mater. 111&112 (1982) 343.ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Cohen, R. Budny, G. M. McCracken, M. Ulrickson, “Mechanisms Responsible for Topographical Changes in PLT Stainless Steel and Graphite Limiters,” Nucl. Fusion 21 (1981) 233.ADSCrossRefGoogle Scholar
  6. 6.
    K. J. Dietz, “Design Considerations and Layout of the JET Limiters,” in Eleventh Symposium on Fusion Technology (Pergamon, NY, 1980) Vol. II p. 1053.Google Scholar
  7. 7.
    D. W. Doll, M. A. Ulrickson, J. L. Cecchi et al., “Design of TFTR Moveable Limiter Blades for Ohmic and Neutral beam Heated Plasmas,” in Ninth Symposium on the Engineering Problems of Fusion Research (IEEE, NY, 1981), p. 1654.Google Scholar
  8. 8.
    H. W. Kugel and M. Ulrickson, “The Design of the Poloidal Divertor Experiment Tokamak Wall Armor and Inner Limiter System,” Nucl. Technol./Fus. 2 (1982) 712.Google Scholar
  9. 9.
    H. Vernickel, K. Behringer, D. Campbell et al., “Test of A Toroidal Large Area Limiter in the ASDEX Tokamak,” J. Nucl. Mater. 111&112 (1982) 317.ADSCrossRefGoogle Scholar
  10. 10.
    L. Sevier, G. O’Connor, “Design of the TFTR Phase II Bumper Limiter,” in Ninth Symposium on the Engineering Problems of Fusion Research (IEEE, NY, 1981) p. 1589.Google Scholar
  11. 11.
    L. Sevier, M. F. Ho, J. Citrolo et al., “TFTR Bumper Limiter Design,” in Tenth Symposium on Fusion Engineering (IEEE, NY, 1982) p. 1072.Google Scholar
  12. 12.
    P. Winkler, S. Fixier, W. V. Timlen, “Design and Analysis of the TFTR Fixed Limiters,” in Ninth Symposium on the Engineering Problems of Fusion Research (IEEE, NY, 1981) p. 1383.Google Scholar
  13. 13.
    J. L. Cecchi, “Tokamak Limiter Design,” Ibid, p. 1378.Google Scholar
  14. 14.
    D. H. Rebut, K. J. Dietz, “The First Wall in JET-Status and Perspectives,” in Twelfth Symposium on Fusion Technology (Pergamon, NY, 1982) Vol. JE, p. 85.Google Scholar
  15. 15.
    D. K. Owens, W. Arunasalam, C. Barnes et al., “PDX Divertor Operation,” J. Nucl. Mater. 93&94 (1980) 213.ADSCrossRefGoogle Scholar
  16. 16.
    M. A. Mahdavi, C. J. Armentrout, F. P. Blau et al., “A Review of the Recent Expanded Boundary Divertor Experiments in the Doublet-Ill Device,” J. Nucl. Mater. 111&112 (1982) 355.ADSCrossRefGoogle Scholar
  17. 17.
    M. Shimada, M. Nagami, K. Ioki, “High Density Single Null Poloidal Divertor Results in Doublet-Ill,” Ibid, p. 362.Google Scholar
  18. 18.
    W. Engelhardt, G. Becker, K. Behringer et al., “Divertor Efficiency in ASDEX,” J. Nucl. Mater. 111&112 (1982) 337.ADSCrossRefGoogle Scholar
  19. 19.
    Y. Shimomura, K. Shimizu, T. Hirayama et al., “JT-60 Program,” J. Nucl. Mater. 128&129 (1984) 19.ADSCrossRefGoogle Scholar
  20. 20.
    M. Ulrickson, D. E. Post, “Particle and Energy Transport in the Plasma Scrape-off Zone and Its Impact in Limiter Design,” J. Vac. Sci. Technol. A1 (1983) 907.ADSCrossRefGoogle Scholar
  21. 21.
    P. Mioduszewski, Institut for Plasmaphysik, Kernforschungsanslage, Juich, Report No. JA1–1681 (1980).Google Scholar
  22. 22.
    M. Urickson, H. W. Kugel, “Initial Temperature Profiles on the PDX Inner Toroidal Limiter,” Nucl. Technol./Fus. 4 (1983) 141.Google Scholar
  23. 23.
    M. Urickson, “Optimum Shapes for Pump Limiters,” Princeton Plasma Physics Laboratory Report No. PPPL-1901 (1982).CrossRefGoogle Scholar
  24. 24.
    J. C. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959) pp. 466–478.Google Scholar
  25. 25.
    P. J. Burns, “TACO2D-A Finite Element Heat Transfer Code,” Lawrence Livermore National Laboratory Report No. UCID-17980, Rev. 2 (1980).Google Scholar
  26. 26.
    M. Ulrickson, “Material Selection for TFTR Limiters,” J. Vac. Sci. Technol., 18 1981) 1037.ADSCrossRefGoogle Scholar
  27. 27.
    J. F. Schivell, D. J. Grove, J. Nucl. Mater. 53 (1974) 107.ADSCrossRefGoogle Scholar
  28. 28.
    J. F. Gloudeman, “The Modularity of MSC/NASTRAN,” in Proceedings of Computer Software and Applications Conference (IEEE, NY, 1978) p. 444.Google Scholar
  29. 29.
    S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, (McGraw-Hill, NY, 1970) p. 433.MATHGoogle Scholar
  30. 30.
    D. J. Strickler, Y-K. M. Peng, J. B. Miller et al., “Numerical Simulation of the Plasma Current Quench Following a Disruptive Energy Loss,” Fusion Technol. 6 (1984) 44.Google Scholar
  31. 31.
    B. Carreras, H. R. Hicks, J. A. Holmes, B. V. Waddel, “Nonlinear Coupling of Tearing Modes with Self-Consistent Resistivity Evolution in a Tokamak,” Phys. Fluids 23 (1980) 1811.ADSCrossRefMATHGoogle Scholar
  32. 32.
    T. Hino, J. DeGrassie, T. S. Taylor, “Heat Flux to the Limiter During Disruptions and Neutral Beam Injection in Doublet-Ill,” J. Nucl. Mater. 121 (1984) 337.ADSCrossRefGoogle Scholar
  33. 33.
    R. Hawryluk, unpublished report.Google Scholar
  34. 34.
    See D. Manos chapter.Google Scholar
  35. 35.
    D. K. Owens, unpublished report.Google Scholar
  36. 36.
    D. W. Weissenberger, “Transient Eddy Currents on Finite Plane and Toroidal Conducting Surfaces,” Princeton Plasma Physics Laboratory Report No. PPPL-1517 (1979).CrossRefGoogle Scholar
  37. 37.
    D. Weissenberger, “SPARK Verson 1 Reference Manual,” Princeton Plasma Physics Laboratory Report No. PPPL-2040 (1983).Google Scholar
  38. 38.
    R. J. Lari, L. R. Turner, “Survey of Eddy Current Programs,” Magnetics MAG19 (IEEE Trans., 1983) 2474.Google Scholar
  39. 39..
    J. Bialek, unpublished report.Google Scholar
  40. 40.
    D. W. Weissenberger, U. R. Christensen, “A Network Mesh Method to Calculate Eddy Currents on Conducting Surfaces,” Magnetics MAG 18 (IEEE Trans., 1982) 422.Google Scholar
  41. 41.
    J. Bialek, D. Weissenberger, M. Ulrickson, J. Cecchi, “Modeling the Coupling of Magnetodynamics and Elastomechanics in Structural Analysis,” in Proceedings of the Tenth Symposium on Fusion Engineering (IEEE, NY, 1983) p. 51.Google Scholar
  42. 42.
    D. W. Weissenberger, J. M. Bialek, G. J. Cargulia et al., “Experimental Observations of the Coupling Between Induced Currents and Mechanical Motion in Torosionally Supported Square Loops and Plates/Part 1: Experimental Analysis” Princeton Plasma Physics Laboratory Report No. PPPL-2158 (1984).CrossRefGoogle Scholar
  43. 43.
    D. W. Weissenberger, J. M. Bialek, G. J. Cargulia et al., “Part 2: Data Inventory,” Princeton Plasma Physics Laboratory Report No. PPPL-2159 (1984).Google Scholar
  44. 44.
    R. F. Mattas, D. L. Smith, M. A. Abdou, “Materials for Impurity Control,” J. Nucl. Mater. 122&123 (1984) 66.ADSCrossRefGoogle Scholar
  45. 45.
    J. L. Cecchi, “Impurity Control in TFTR,” J. Nucl. Mater. 93&94 (1980) 28.ADSCrossRefGoogle Scholar
  46. 46.
    B. L. Doyle, W. R. Wampler, H. F. Dylla, et al., “Characterization of Impurities Deposited on the PDX Graphite Rail Limiters,” J. Nucl. Mater. 128&129 (1984) 955.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Ulrickson
    • 1
  1. 1.Plasma Physics LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations