Advertisement

Abstract

Particle confinement times in present day controlled fusion devices are typically less than a tenth of the discharges’ duration, and this fraction will decrease in future machines with larger discharge times. Thus it is important to study the mechanism of the recycling of neutral atoms and molecules formed as plasma ions strike device walls at the plasma edge.

Keywords

Neutral Particle Neutral Density Monte Carlo Algorithm Test Flight Free Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audenaerde, K. et al4.2, J. Comp. Phys. 34 (1980) 268–284.ADSCrossRefMATHGoogle Scholar
  2. Axon, K.B. et al.6.5, in Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1983) Vol. 3, 201–208.Google Scholar
  3. Baskes, W.6, J. Nucl. Mater. 128–129 (1984) 676–680.CrossRefGoogle Scholar
  4. Baskes, W. et al.6, J. Nucl. Mater. 128–129 (1984) 629–635.CrossRefGoogle Scholar
  5. Behrisch, R. and Eckstein, W.2.1,5.5, “Ion Backscattering from Solid Surfaces,” Nato ASI, Val Morin, Canada (1984).Google Scholar
  6. Biersack, J.P. and Haggmark, L.G.5.5,6, Nucl. Inst. and Methods 174 (1980) 257–269.ADSCrossRefGoogle Scholar
  7. Boley, C.6, J. Nucl. Mater. 128–129 (1984) 127–130.CrossRefGoogle Scholar
  8. Boley, C. et al.6, J. Nucl. Mater. 121 (1984) 316–321.ADSCrossRefGoogle Scholar
  9. Budny, R. et al.(1982)6.2, J. Vac. Sci. Tech. 20(4) (1982) 1238–1241.ADSCrossRefGoogle Scholar
  10. Budny, R. et al.(1984A)6.1, J. Nucl. Mater. 121 (1984) 294–303.ADSCrossRefGoogle Scholar
  11. Budny, R. et al.(1984B)6.1, J. Nucl. Mater. 128–129 (1984) 425–429.CrossRefGoogle Scholar
  12. Budny, R.6.3, private communication.Google Scholar
  13. Burrell, K.3, J. Comp. Phys. 27 (1978) 88–102.ADSCrossRefMATHGoogle Scholar
  14. Carter, L.L. and Cashwell, C.D.5, Particle Transport Simulation with the Monte Carlo Method, ERDA Critical Review Series, 1975.CrossRefGoogle Scholar
  15. Cashwell, E.D. and Everett, C.J.5, Monet-Carlo Method for Random Walk Problems, Pergamon Press, Oxford (1959).Google Scholar
  16. Cecchi et al.6.2, J. Nucl. Mater. 111–112 (1982) 305–310.CrossRefGoogle Scholar
  17. Chodura, R.2.2, “Plasma Flow in the Sheath and Presheath,” Nato ASI, Val Morin, Canada (1984).Google Scholar
  18. Conn R.W. et al.(1984A)2.2, “Technical Assessment of the Critical Issues and Problem Areas in the Plasma Materials Interaction Field,” Vol. 1, U.S. Dept. of Energy. Office. of Fusion Energy Report PPG-765 (January, 1984).Google Scholar
  19. Conn, R.W. et al.(1984B)6.6, J. Nucl. Mater. 121 (1984) 350–362.ADSCrossRefGoogle Scholar
  20. Connor, J.W.4.1, Plasma Phys. 19 (1977) 853–873.ADSCrossRefGoogle Scholar
  21. Cupini, E. et al.(1983A)5, “NIMBUS — Monte Carlo Simulation of Neutral Particle Transport in Fusion Devices,” Comm. of the European Communities, Directorate General XII — Fusion programme Report 324/9, Brussels (1983).Google Scholar
  22. Cupini, E. et al.(1983B)5.2, J. Comp. Phys. 52 (1983) 122–129.ADSCrossRefMATHGoogle Scholar
  23. Dnestrovskii, Y.N. et al.4.1, Atomic Energy 32 (1972) 301.Google Scholar
  24. Doll, D.W. et al6.3, in Proceedings of the Ninth Symposium on the Engineering Problems of Fusion Research (IEEE, New York 1981) Vol. 2, 1654–1657.Google Scholar
  25. Dushman, S. and Lafferty, J.M.6.6, Scientific Foundations of Vacuum Technique, John Wiley and Sons, New York (1962).Google Scholar
  26. Dylla, H.F. et al.6.4, J. Nucl. Mater. 121 (1984) 144–150.ADSCrossRefGoogle Scholar
  27. Eckstein, W. and Verbeek, H.6, “Data on Light Ion Reflection,” Max-Planck-Institute für Plasmaphysik, Garching-bei-München, Report IPP 9/32 (1979).Google Scholar
  28. El-Derini, Z. and Gelbard, E.M.3, Trans. Amer. Nucl. Soc. 23 (1976) 45.Google Scholar
  29. Evans, K. et al.6, J. Nucl. Mater. 128–129 (1984) 452–457.CrossRefGoogle Scholar
  30. Fielding, S.J.. et al.2.1,6,6.5, J. Nucl. Mater. 128–129 (1984) 390–394.CrossRefGoogle Scholar
  31. Freeman, R.L. and Jones, E.M.5.2,6.1, “Atomic Collision Processes in Plasma Physics Experiments,” Culham Laboratory Report CLM-R137 (1974).Google Scholar
  32. Galambos, J.D. and Peng, Y-K.M.6.4, J. Nucl. Mater. 121 (1984) 205–209.ADSCrossRefGoogle Scholar
  33. Gilligan, J. et al.3, Nucl. Fusion 18 (1978) 63–85.ADSCrossRefGoogle Scholar
  34. Greenspan, E.3, Nucl. Fusion 14 (1974) 771–778.ADSCrossRefGoogle Scholar
  35. Grek, B.6.4, private communication.Google Scholar
  36. Hammersley, H.H. and Handscomb, D.C.5,54, Monte Carlo Methods, Methuen, London, 1964.CrossRefMATHGoogle Scholar
  37. Harbour, P.J. et al.6.5, J. Nucl Mater. 128–129 (1984) 359–367.CrossRefGoogle Scholar
  38. Harrison, M.21, “Atomic and Molecular Collisions in the Plasma Boundary,” Nato ASI, Val Morin, Canada (1984).Google Scholar
  39. Heifetz, D.B. and Budny, R. 6.1, Bull. Am. Phys. Soc. 29 (1984) 1219.Google Scholar
  40. Heifetz, D.B. and Post, D.5,6.1, Comp. Phys. Comm. 29 (1983) 287–299.ADSCrossRefGoogle Scholar
  41. Heifetz, D.B. and Cecchi, J.6.2, Bull. Am. Phys. Soc. 27 (1982) 1144.Google Scholar
  42. Heifetz, D.B. et al.(1982)5,5.5,6, J. Comp Phys. 46 (1982) 309–327.ADSCrossRefMATHGoogle Scholar
  43. Heifetz, D.B. et al.(1984)6.4, J. Nucl. Mater. 121 (1984) 189–193.ADSCrossRefGoogle Scholar
  44. Heifetz, D.B. et al.6.3, “Three-Dimensional Calculations of the Transport of Neutral Hydrogen and Molecular Impuirities in TFTR,” presented at the Twelth European Conf. on Controlled Fusion and Plasma Physics, Budapest, Hungary, 1985, to be published.Google Scholar
  45. Hogan, J.T.5, J. Nucl. Mater. 111–112 (1982) 413–419.CrossRefGoogle Scholar
  46. Hsu, W.2.1, The Gasesous Divertor Experiment, Ph.D. Thesis, Princeton University, Princeton (1984).Google Scholar
  47. Hughes, M.H. and Post, D.E.5,6.1,7, J. Comp. Phys. 28 (1978) 43–55.MathSciNetADSCrossRefGoogle Scholar
  48. James, E.5, Rep. Prog. Phys. 43 (1980).Google Scholar
  49. Janev, R.K. et al.(1984)6,6.1,6.3, J. Nucl. Mater. 121 (1984) 10–18.ADSCrossRefGoogle Scholar
  50. Janev, R.K. et al.(1985)6, ‘Atomic and Molecular Processes in Hydrogen-Helium Plasmas,’ preprint (1985).Google Scholar
  51. Helium Plasmas, preprint (1985).Google Scholar
  52. Johnson, P.C. et al., J. Nucl. Mater. 121 (1984) 210–221.ADSCrossRefGoogle Scholar
  53. Jones, E.M.6.1, “Atomic Collision Processes in Plasma Physics Experiments: II,” Culham Laboratory Report No. CLM-R175 (1977).Google Scholar
  54. Kalos M.H. et al.5, “Monte-Carlo Methods in Reactor Computations,” in Computing Methods in Reactor Physics, Gordon and Breach, Boston, 1968.Google Scholar
  55. Kato, T. et al.2.2, J. Nucl. Mater. 128–129 (1984) 1006–1010.CrossRefGoogle Scholar
  56. Kaye, S.M. et al.6.4, J. Nucl. Mater. 121 (1984) 115–125.ADSCrossRefGoogle Scholar
  57. Koborov, N.N. et al.7, J. Nucl. Mater. 128–129 (1984) 691–693.CrossRefGoogle Scholar
  58. Langer, W.E.2.2, Nucl. Fusion 22 (1982) 751–761.CrossRefGoogle Scholar
  59. Langley, R.A. et al.2.2, “Data Compendium for Plasma-Surface Interactions,” Nucl. Fusion Supp. (1984).Google Scholar
  60. Lehnert, B.4.1, Physica Scripta 12 (1975) 327.ADSCrossRefGoogle Scholar
  61. Lewis, E.E. and Miller, W.F.4.1, Computational Methods of Neutron Trans port, Wiley, New York, 1984.Google Scholar
  62. Mandelrot, B.B.7, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.Google Scholar
  63. Marable, J.H. and Oblow, E.M.3, Nucl. Sci.Eng. 61 (1976) 90–97.Google Scholar
  64. McGrath, E.J. and Irving, D.C.5, “Techniques for Efficient Monte Carlo Simulation,” ORNL-RSIC-38 (April, 1975).Google Scholar
  65. Morgan, J.G. and Harbour, P.J.6.4, in Fusion Technology 1980, Pergamon Press, Oxford (1981) Vol. 2, 1187.Google Scholar
  66. Ohyabu, N. et al.6.4, in Proceedings of the IEEE International Conf. on Plasma Science (IEEE San Diego, CA 1983) 52–53.Google Scholar
  67. Oshiyama, T. et al.2.2, J. Nucl. Mater. 128–129 (1984) 996–998.CrossRefGoogle Scholar
  68. Owens, D. et al.6.4, J. Nucl. Mater. 121 (1984) 29–35.ADSCrossRefGoogle Scholar
  69. Ozawa, K.2.2, J. Nucl. Mater. 128–129 (1984) 999–1000.CrossRefGoogle Scholar
  70. Parsons, C. and Medley, S.1,5, Plasma Phys. 16 (1974) 267–273.ADSCrossRefGoogle Scholar
  71. Petravic, M. et al.(1982)2.1,6, Phys. Rev. Letts. 48 (1982) 326–329.ADSCrossRefGoogle Scholar
  72. Petravic, M. et al.(1984A)6, J. Nucl. Mater. 128–129 (1984) 91–99.CrossRefGoogle Scholar
  73. Petravic, M. et al.(1984B)6, J. Nucl. Mater. 128–129 (1984) 111–113.CrossRefGoogle Scholar
  74. Pfeiffer, W.3, “Calculation of Neutral Transport in a Plasma Using a Neutron Transport Method,” General Atomic Co. Rep. GA-A13995 (1976).Google Scholar
  75. Post, D.E. and Lackner, K.6,6.6, “Plasma Models for Impurity Control Experiments,” Nato ASI, Val Morin, Canada (1984).Google Scholar
  76. Post, D.E.(1982)6.1, J. Nucl. Mater. 111–112 (1982) 383–395.CrossRefGoogle Scholar
  77. Post, D.E. et al.(1984)6.4, J. Nucl. Mater. 121 (1984) 171–178.ADSCrossRefGoogle Scholar
  78. Post, D.E. and Singer, C.22, J. Nucl. Mater. 128–129 (1984) 78–90.CrossRefGoogle Scholar
  79. Reiter, D. and Nicolai, A.5, J. Nucl. Mater. 111–112 (1982) 434–439.CrossRefGoogle Scholar
  80. Robinson, M. et al.5.5,6, Phys. Rev. B9 (1974) 5008.ADSGoogle Scholar
  81. Roth, J.2.1, “Chemical Sputtering and Radiation Enhanced Simulation of Carbon,” NATO ASI, Val Morin, Canada (1984).Google Scholar
  82. Russell, R.M.5.6, “The CRAY-1 Computer System,” Communications of the ACM (January, 1978) 63–72.Google Scholar
  83. Ruzic, D. (1984)2.2, Total Scattering Cross-Sections and Interatomic Potentials for Neutral Hydrogen and Helium on Some Noble Gases, Ph.D. Thesis, Princeton University, Princeton (1984).Google Scholar
  84. Ruzic, D. et al.6.3, Bull. Am. Phys. Soc. 29 (1984) 1334.ADSGoogle Scholar
  85. Ruzic, D.(1985)7, private communication.Google Scholar
  86. Sagara, A. and Kamada, K.2.2, J. Nucl. Mater. 111–112 (1982) 812–815.CrossRefGoogle Scholar
  87. Saito, S. et al.6.4, J. Nucl. Mater. 121 (1984). 199–204.ADSCrossRefGoogle Scholar
  88. Sakharov, A.P.2, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Pergamon Press, Oxford (1961) Vol. 1, 21.Google Scholar
  89. Schneider, W. et al.6, in Eleventh Conf. on Controlled Fusion and Plasma Physics, European Physical Soc. 7d (September, 1983).Google Scholar
  90. Schneider, W. and Lackner, K.6,6.4, in Int. Conf. on Plasma Physics, (Goetborg, Sweden, 1982).Google Scholar
  91. Seki, Y. et al.5,5.5, Nucl. Fusion 20 (1980) 1213–1226.ADSCrossRefGoogle Scholar
  92. Shimada, M. et al.6,6.4, Nucl. Fusion 22 (1982) 643–655.CrossRefGoogle Scholar
  93. Singer, C. et al.(1985A)6, J. Vac. Sci. and Tech. bf A 3(3) (1985) 1183–1187.ADSCrossRefGoogle Scholar
  94. Singer, C. et al.(1985B)6, “BALDUR: A one-Dimensional Plasma Transport Code,” to appear in Comp. Phys. Comms.Google Scholar
  95. Smith, D. et al.6, in Ninth Symp. of Eng. Problems of Fusion Research (IEEE, New York, 1981) Vol. 1, 719–722.Google Scholar
  96. Sobol, I.M.5, The Monte Carlo Method, Mir, Moscow, 1975.Google Scholar
  97. Sotnikiv, V.M.7, Sov. J. Plasma Phys. 7(2) (1981) 236–239.Google Scholar
  98. Spanier, J. and Gelbard, E.M.5, Monte-Carlo Principles and Neutron Transport Problems, Addison Wesley Pub. Co., Reading, Mass., 1969.MATHGoogle Scholar
  99. Stangeby, P.2.2, “The Plasma Sheath,” Nato ASI, Val Morin, Canada (1984).Google Scholar
  100. Tabata, T. et al.6, “Data on the Backscattering Coefficients of Light Ions from Solids,” Inst. of Plasma Physics, Nagoya University Report No. IPP-J-AM-18 (1981).Google Scholar
  101. Tamor, S.4.2,6.1.7, J. Comp. Phys. 40 (1981) 104.119.Google Scholar
  102. Tendier, M.2.2, Plasma Physics 25 (1983) 767–779.ADSCrossRefGoogle Scholar
  103. Terasawa, M. et al.2.2, J. Nucl. Mater. 128–129 (1984) 1001–1005.CrossRefGoogle Scholar
  104. Thomas, E.W. et al.2.2, J. Nucl. Mater. 111–112 (1982) 809–811.CrossRefGoogle Scholar
  105. Vernickel, H. et al.6, J. Nucl. Mater. 128–129 (1984) 71–76.CrossRefGoogle Scholar
  106. Wagner, F. et al.6.4, Phys. Rev. Lett. 49 (1982) 1408.ADSCrossRefGoogle Scholar
  107. Weisheit, J.6, J. Phys. B: Atom Molec. Phys. 8 (1975) 2556–2564.ADSCrossRefGoogle Scholar
  108. Williams, M.M.R.4.1, in Advances in Nuclear Science and Technology, Vol. 7, Academic Press, New York (1973) 283.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. B. Heifetz
    • 1
  1. 1.Princeton Plasma Physics LaboratoryPrincetonUSA

Personalised recommendations