Advertisement

Plasma Models for Impurity Control Experiments

  • D. E. Post
  • K. Lackner

Abstract

There have been significant advances in impurity control modeling in the last five years. The models for impurity control has grown in sophistication from simple, almost heuristic models to two and three-dimensional codes embodying realistic geometries and many of the important plasma wall and atomic physics processes. Perhaps more importantly, the growth in the models has helped to increase our understanding of how divertors and limiters work as impurity control devices and has aided in the design of improved divertors and limiters. The greatest success of the models has been in helping to identify the key role that local recycling can play in producing a “high recycling” divertor in which a cool, dense plasma is produced next to neutralizer plate. This cool plasma allows the possibility of removing the heating power (neutral beams, ICRF, alpha particles, etc.) from the plasma without the generation of large amounts of impurities. The low temperature reduces the sheath potential and thus reduces the energy of the ions and neutrals that strike the neutralizer plate to below the sputtering threshold of a number of candidate wall materials, eliminating the divertor plate as a source of impurities.

Keywords

Field Line Particle Flux Target Plate Impurity Control Background Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Stacey, Fusion Power Analysis, (John Wiley and Sons, NY, 1981).Google Scholar
  2. [2]
    S. Braginskii in Reviews of Plasma Physics, (Consultants Bureau, NY, 1965), Vol.1.Google Scholar
  3. [3]
    C. Singer and W. Langer, Phys. Rev. A 28, 994 (1983).ADSCrossRefGoogle Scholar
  4. [4]
    M. Petravic et al., J. Nucl. Mater. 128&129, 91 (1984).CrossRefGoogle Scholar
  5. [5]
    P. Harbour, J. Morgan, Culham Laboratory, Abingdon, UK, Report No. CLM-R234 (1982).Google Scholar
  6. [6]
    M. Ulrickson and D. Post, J. Vac. Sci./Technol. A1 907 (1983).ADSCrossRefGoogle Scholar
  7. [7]
    P. Gierszewski et al., Phys. Rev. Lett. 49, 650 (1982).ADSCrossRefGoogle Scholar
  8. [8]
    U. Daybelge, Nucl. Fusion 21 1589 (1981).CrossRefGoogle Scholar
  9. [9]
    A. Bailey and G. Emmert, J. Nucl. Mater. 111&112, 403 (1983).Google Scholar
  10. [10]
    T. Takizuka et al., J. Nucl. Mater. 128&129, 104 (1984).CrossRefGoogle Scholar
  11. [11]
    G. Fussmann et al., J. Nucl. Mater. 128&129, 350 (1984).CrossRefGoogle Scholar
  12. [12]
    J. W. Wilson and J. LeBlanc, private communication.Google Scholar
  13. [13]
    A. Belly R. Evans, and D. Nicholas, Phys. Rev. Lett 46, 243 (1981).ADSCrossRefGoogle Scholar
  14. [14]
    C. Singer, J. Fus. Eng. 3, 231 (1983).CrossRefGoogle Scholar
  15. [15]
    W. Langer and C. Singer, “Two Chamber Model for Divertors with Plasma Recycling,” submitted to IEEE Trans. Plas. Sci.Google Scholar
  16. [16]
    G. Dahlquist and A. Bjorck, Numerical Methods, (Prentice-Hall, Inc., NJ), 1984.Google Scholar
  17. [17]
    R. Hawryluk and J. Schmidt, Nucl. Fusion 16, 775 (1976).ADSCrossRefGoogle Scholar
  18. [18]
    F. Marcus, private communication (1976).Google Scholar
  19. [19]
    P. Raimbrult and J. Girard, Phys. Scrip. 23, 107 (1981).ADSCrossRefGoogle Scholar
  20. [20]
    A. Mense and G. Enunert, Nucl. Fusion 19, 361 (1979).ADSCrossRefGoogle Scholar
  21. [21]
    J. Ogden et al., IEEE Trans. Plas. Sci., PS-9, 274 (1981).ADSCrossRefGoogle Scholar
  22. [22]
    G. Becker and C. Singer, Max Planck Institut fur Plasmaphysik, Report No. IPP-III/75, Garching (November 1981).Google Scholar
  23. [23]
    H. Howe, Oak Ridge National Laboratory Report ORNL/TM-7803, 1981.Google Scholar
  24. [24]
    M. Ulrickson and D. Post, J. Vac. Sci./Technol. A1, 907 (1983).ADSCrossRefGoogle Scholar
  25. [25]
    J. Hogan, Methods in Computational Physics, Controlled Fusion, (Academic Press, London, 1976). Vol. 16, 131.Google Scholar
  26. [26]
    D. Duchs, D. Post, and P. Rutherford, Nucl. Fusion 17, 565 (1977).ADSCrossRefGoogle Scholar
  27. [27]
    M. Shimada et al., Japan Atomic Research Institute Report No. JAERI M-9470.Google Scholar
  28. [28]
    J. Morgan and P. Harbour, Fusion Technology (Pergamon, Oxford, 1980), Vol. 2, 1187.Google Scholar
  29. [29]
    M. Ali Mahdavi et al., Phys. Rev. Lett. 47, 1602 (1981).ADSCrossRefGoogle Scholar
  30. [30]
    K. Lackner and W. Schneider, in International Conference on Plasma Physics (Göteborg, Sweden, June 1982), to be published.Google Scholar
  31. [31]
    M. A. Madhavi et al., J. Nucl. Mater. 111&112, 355 (1982).CrossRefGoogle Scholar
  32. [32]
    D. Post, W. Langer, and M. Petravic, J. Nucl. Mater. 121, 171 (1984)ADSCrossRefGoogle Scholar
  33. [33]
    J. Galambos et al., J. Nucl. Mater. 121, 205 (1984).ADSCrossRefGoogle Scholar
  34. [34]
    D. Potter, Computational Physics (Wiley Interscience, London, 1973) p. 88.MATHGoogle Scholar
  35. [35]
    M. Shimada et al., J. Nucl. Mater. 121, 184 (1984).ADSCrossRefGoogle Scholar
  36. [36]
    W. Schneider et al., J. Nucl. Mater. 121, 178 (1984).ADSCrossRefGoogle Scholar
  37. [37]
    B. Lipschultz et al., J. Nucl. Mater. 121, 441 (1984).ADSCrossRefGoogle Scholar
  38. [38]
    S. Sengoku et al., Nucl. Fusion 24, 415 (1984).CrossRefGoogle Scholar
  39. [39]
    M. Petravic et al., Phys. Rev. Lett. 48, 326 (1982).ADSCrossRefGoogle Scholar
  40. [40]
    D. Heifetz et al., J. Comp. Phys. 42, 309 (1982).ADSCrossRefGoogle Scholar
  41. [41]
    M. Petravic et al., in Plasma Physics and Controlled Nuclear Fusion Research 1982, (IAEA, Vienna, 1983) Vol. 1, 323.Google Scholar
  42. [42]
    R. Braams et al., J. Nucll Mater. 121, 75 (1984).ADSCrossRefGoogle Scholar
  43. [43]
    S. Saito et al., J. Nucl. Mater. 121, 199 (1984).ADSCrossRefGoogle Scholar
  44. [44]
    Yu. L. Igitkhanov et al., in Eleventh European Conference on Controlled Fusion and Plasma Physics, (Aachen, 1983) Vol. 3, 397.Google Scholar
  45. [45]
    M. Petravic, D. Heifetz, G. Kuo-Petravic, and D. Post, J. Nucl. Mater. 128&129, 111 (1984).CrossRefGoogle Scholar
  46. [46]
    M. Petravic, D. Heifetz, S. Heifetz, and D. Post, J. Nucl. Mater. 128&129, 91 (1984).CrossRefGoogle Scholar
  47. [47]
    W. Schneider and K. Lackner, in International Conference on Plasma Physics, (Göteberg, June 1982).Google Scholar
  48. [48]
    D. E. Post et al., Atomic Data and Nuclear Tables 20, 397 (1977).ADSCrossRefGoogle Scholar
  49. [49]
    K. Bol et al., in Plasma Physics and Controlled Nuclear Fusion Research 1978, (IAEA, Vienna) Vol. 1, 11.Google Scholar
  50. [50]
    A. Gibson, M. L. Watkins, in Ninth European Controlled Fusion and Plasma Physics (Prague, 1977) Vol. 1, 31.Google Scholar
  51. [51]
    K. Lackner, J. Neuhauser, in Divertor and Impurity Control (Proceedings of IAEA Technical Committee Meeting, Garching 1981), 58.Google Scholar
  52. [52]
    R. A. Hulse, D. E. Post, D. R. Mikkelsen, J. Phys. B. At. Mol. Phys. 13, 3895 (1980).CrossRefGoogle Scholar
  53. [53]
    R. C. Isler, C. Crume, Phys. Rev. Lett. 41, 1296 (1978)ADSCrossRefGoogle Scholar
  54. [53]a
    R. C. Isler, C. Crume, W. H. M. Clark, et al., Nucl. Fusion 22 333 (1982).CrossRefGoogle Scholar
  55. [54]
    R. J. Jensen et al., Nucl. Sci./Eng. 65, 282 (1978).Google Scholar
  56. [55]
    S. P. Hirschman, D. J. Sigmar, Nucl. Fusion 21, 1079 (1979).CrossRefGoogle Scholar
  57. [56]
    W. M. Stacey, D. J. Sigmar, Nucl. Fusion 19, 1665 (1979).ADSCrossRefGoogle Scholar
  58. [57]
    J. Roth, J. Bohdansky, A. P. Martinelli, Radiation Effects 48, 213 (1980) and references cited therein.Google Scholar
  59. [58]
    K. Borrass, Max Planck Institut fur Plasmaphysik, Report No. IPP 4/191, Garching (1980).Google Scholar
  60. [59]
    A. T. Mense, PhD. Thesis, University of Wisconsin, UEFDM-219 (1977).Google Scholar
  61. [60]
    J. Odgen et al., IEEE Trans. Plasma Sci.PS-9, 274 (1981).ADSGoogle Scholar
  62. [61]
    TFR Group, Nucl. Fusion 22 1173 (1982)CrossRefGoogle Scholar
  63. [61]a
    TFR Group,Equipe TFT, in Plasma Physics and Controlled Nuclear Fusion Research 1982 (IAEA, Vienna), Vol. 3, 219.Google Scholar
  64. [62]
    K. Behringer et al., in Eleventh European Conference on Controlled Fusion and Plasma Physics (Aachen, 1983) Vol. 2, 467.Google Scholar
  65. [63]
    R. J. Hawryluk, S. Suckewer, S. P. Hirshman, Nucl. Fusion 19, 607 (1979).ADSCrossRefGoogle Scholar
  66. [64]
    M. Tendier, J. Neuhauser, R. Wunderlich, Nucl. Fusion (to be published).Google Scholar
  67. [65]
    R. Chodura, et al., in Plasma Physics and Controlled Nuclear Fusion Research 1982 (IAEA, Vienna) Vol. 1, 313.Google Scholar
  68. [66]
    J. Neuhauser et al., Nucl. Fusion 24, 39 (1984).CrossRefGoogle Scholar
  69. [67]
    J. Neuhauser et al., J. Nucl. Mater. 121, 194 (1984).ADSCrossRefGoogle Scholar
  70. [68]
    S. Sengoku et al., Nucl. Fusion 19, 1327 (1979).ADSCrossRefGoogle Scholar
  71. [69]
    J. Brooks, J. Nucl. Mater. 111&112, 457 (1982).CrossRefGoogle Scholar
  72. [70]
    Impurity Control Engineering, in INTOR, Phase IIA, USA Contributions to the 9th Workshop-Meeting, Vol. 1 (1984).Google Scholar
  73. [71]
    M. Harrison, J. Neuhauser, private communication.Google Scholar
  74. [72]
    R. A. Hulse, private communication.Google Scholar
  75. [73]
    M. Okamoto, T. Amano, J. Comp. Phys. 26, 80 (1978).ADSCrossRefMATHGoogle Scholar
  76. [74]
    C. Mercier et al., Nucl. Fusion 21, 291 (1981).ADSCrossRefGoogle Scholar
  77. [75]
    K. Lackner et al., Z. Naturforsch. 37a, 931 (1982).MathSciNetADSGoogle Scholar
  78. [76]
    M. Kaufmann et al., submitted to Nucl. Fusion.Google Scholar
  79. [77]
    G. Fussmann et al., J. Nucl. Mater. 121, 164 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. E. Post
    • 1
  • K. Lackner
    • 2
  1. 1.Plasma Physics LaboratoryPrinceton UniversityPrincetonUSA
  2. 2.Max Planck Institut für PlasmaphysikGarching bei MünchenFederal Republic of Germany

Personalised recommendations