Advertisement

Properties of Materials

  • M. F. Smith
  • J. B. Whitley

Abstract

The selection of materials for plasma-interactive components in a magnetic confinement fusion device is a complex process that usually involves numerous trade-offs. In general, the selection criteria are heavily weighted according to specific design objectives or constraints, and it is difficult to make broad statements regarding the properties of “good” versus “bad” materials. Accordingly, no attempt is made in this chapter to describe a set of properties for an optimum material, but rather, the purpose here is to review some important fundamental properties that can be used to guide the selection or development of materials for a specific first-surface application.

Keywords

Thermal Conductivity Heat Flux Debye Temperature Monovalent Metal Surface Temperature Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials,” Wiley and Sons, New York (1976).Google Scholar
  2. 2.
    R. D. Watson, M. F. Smith, J. B. Whitley, and J. M. McDonald, Thermomechanical testing of beryllium for the JET/ISX-B beryllium limiter experiment, in: “Proceedings of the 13th Symposium on Fusion Technology,” Varese, Italy, Sept. 24–28, 1984.Google Scholar
  3. 3.
    B. T. Kelley, “Physics of Graphite,” Applied Science, London (1981).Google Scholar
  4. 4.
    W. P. Kingery, H. K. Bowen, and D. R. Ahlman, “Introduction to Ceramics,” Wiley and Sons (1976).Google Scholar
  5. 5.
    J. B. Whitley, A. W. Mullendore, R. D. Watson, M. F. Smith, and R. S. Blewer, J. Nucl. Materials 111&112:866 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    R. E. Peterson, Materials Res. and Standards 3(2):122 (1963).Google Scholar
  7. 7.
    ASM Committee on Wrought Stainless Steels, Section I: Stainless steel types and their characteristics, in: “Sourcebook on Stainless Steels,” A. G. Gray, ed., Am. Soc. for Metals, Metals Park, Ohio (1976).Google Scholar
  8. 8.
    Anonymous, Reaction Bonded Silicon Carbide, Technical Bull. No. 811, Pure Carbon Co., St. Mary’s, Pennsylvania.Google Scholar
  9. 9..
    Anonymous, UCAR Premium Grade ATJ, Technical Bull. No. 463–205, Union Carbide Corp., New York.Google Scholar
  10. 10.
    E. J. Stenfanides, Design News, Jan. 22, 1979.Google Scholar
  11. 11.
    R.F. Mattas, Austenitic Stainless Steel Bulk Property Considerations for Fusion Reactors, Report No. ANL/FPP/TM-86, Argonne Nat. Lab., Argonne, Illinois (1979).Google Scholar
  12. 12.
    L. R. Smith and W. C. Leslie, Properties of pure metals — iron, in: “Metals Handbook,” 9th edition, vol. 2, D. Benjamin, ed., Am. Soc. for Metals, Metals Park, Ohio (1979).Google Scholar
  13. 13.
    T. C. Chi, J. Phys. Chem Ref. Data, 8(2):439 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    G. T. Meaden, “Electrical Resistance in Metals,” Plenum, New York (1965).Google Scholar
  15. 15.
    C. A. Wert and R. M. Thompson, “Physics of Solids,” 2nd edition, McGraw-Hill, New York (1964).Google Scholar
  16. 16.
    D. E. Roberts, Ann. Phys., 40:453 (1963).Google Scholar
  17. 17.
    W. Meissner, H. Franz, and H. Westerhof, Ann. Phys. Lpz., 13:555 (1932).CrossRefGoogle Scholar
  18. 18.
    N. Ganguli and K. S. Krishnan, Nature, 144:67 (1939).Google Scholar
  19. 19.
    P. G. Klemens, Thermal conductivity and vibrational modes, in: “Solid State Physics,” vol. 7, Academy Press, New York (1958).Google Scholar
  20. 20.
    G. Leibfried and E. Schlomann, Nachr. Akad. Wiss. Gottingen, Math-Physik. Kl., 2a(4):71 (1954)Google Scholar
  21. 20a.
    G. Leibfried and E. Schlomann,English translation AEC-TR-5892, 1–36 (1963).Google Scholar
  22. 21.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermophysical Properties of Matter, Volume 1, Thermal Conductivity-Metallic Elements and Alloys,” Plenum, New York (1970).Google Scholar
  23. 22.
    Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, “Thermophysical Properties of Matter, Volume 2, Thermal Conductivity-Nonmetallic Solids,” Plenum, New York (1970).Google Scholar
  24. 23.
    Y.S. Touloukian and E. H. Buyco, “Thermophysical Properties of Matter, Volume 4, Specific Heat-Metallic Elements and Alloys,” Plenum, New York (1970).Google Scholar
  25. 24.
    Y.S. Touloukian and E. H. Buyco, “Thermophysical Properties of Matter, Volume 5, Specific Heat-Nonmetallic Solids,” Plenum, New York (1970).Google Scholar
  26. 25.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, “Thermophysical Properties of Matter, Volume 12, Thermal Expansion-Metallic Elements and Alloys,” Plenum, New York (1976).Google Scholar
  27. 26.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, “Thermophysical Properties of Matter, Volume 13, Thermal Expansion-Nonmetallic Solids,” Plenum, New York (1977).Google Scholar
  28. 27.
    J. E. Hove, “Proc. First Conference on Industrial Carbon and Graphites,” SCI, London (1958).Google Scholar
  29. 28.
    W.B. Gauster, J.A. Koski and R.D. Watson, J. Nucl. Materials 122&123:80 (1984).ADSCrossRefGoogle Scholar
  30. 29.
    G.L. Kulcinski, Plasma Physics and Controlled Nuclear Fusion, Vol. II:251 (1974), IAEA-CN-33/S3–1.Google Scholar
  31. 30.
    R.W. Conn, J. Nucl. Materials 103&104:7 (1981).ADSCrossRefGoogle Scholar
  32. 31.
    D.L. Smith, J. Nucl. Materials 103&104:19 (1981).ADSCrossRefGoogle Scholar
  33. 32.
    R.E. Nygren, J. Nucl. Materials 103&104:31 (1981).ADSCrossRefGoogle Scholar
  34. 33.
    R. Behrisch, J. Nucl. Materials 85&86:1047 (1979).ADSCrossRefGoogle Scholar
  35. 34.
    G.M. McCracken and P.E. Stott, Nucl. Fusion, Vol. 19, no. 7:889 (1979).ADSCrossRefGoogle Scholar
  36. 35.
    A.J. Chapman, “Heat Transfer,” Macmillan Pub. Co., N.Y., 1984.Google Scholar
  37. 36.
    “Handbook of Heat Transfer,” edited by W.M. Rohsenow and J.P. Hartnett, McGraw Hill (1973).Google Scholar
  38. 37.
    Hibbit, Karlsoon and Sorenson, Inc., “ABAQUS Users Manual,” (1984).Google Scholar
  39. 38.
    M. Ulrickson, in this volume.Google Scholar
  40. 39.
    R. Behrisch, J. Nucl. Material 93&94:498 (1980).ADSCrossRefGoogle Scholar
  41. 40.
    R. Behrisch, Nuc. Fusion 12:695 (1972).CrossRefGoogle Scholar
  42. 41.
    B.J. Merrill, in “Proceedings of the 9th Sym. on Eng. Problems of Fusion Research,” Chicago, Ill. (1981), IEEE 81CH1715–2:1621.Google Scholar
  43. 42.
    A.M. Hassanein, G.L. Kulcinski and W.G. Wolfer, Surface Melting and Evaporation During Plasma Disruptions in Magnetic Fusion Devices, to be published in Nucl. Eng. Design/Fusion (also UWFDM-494, 1982).Google Scholar
  44. 43.
    C.D. Croessmann, G.L. Kulcinski and J.B. Whitley, J. Nucl. Materials 128&129:816 (1984).ADSCrossRefGoogle Scholar
  45. 44.
    W.G. Wolfer and A.M. Hassanein, J. Nucl. Materials 111&112:560 (1982).ADSCrossRefGoogle Scholar
  46. 45.
    J.F. Schivell, D.J. Grove, J. Nucl. Materials 53:107 (1974).ADSCrossRefGoogle Scholar
  47. 46.
    S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw Hill, NY (1951).MATHGoogle Scholar
  48. 47.
    J.L. Cecchi, Impurity Control in TFTR, PPPL-1668, June (1980).Google Scholar
  49. 48.
    J.L. Cecchi, “9th Sym. on Eng. Problems of Fusion Research,” Chicago, Ill. (1981), IEEE 81-CH1715–2:1378.Google Scholar
  50. 49.
    G.L. Kulcinski, Contemp. Phys, Vol. 20, no. 4:17 (1979).CrossRefGoogle Scholar
  51. 50.
    R.E. Gold, E.E. Bloom, R.W. Clinard, D.L. Smith, R.D. Stevenson and W.G. Wolfer, Nucl. Tech. Fusion, Vol. 1:169 (1981).Google Scholar
  52. 51.
    D.I. Roberts, S.N. Rosenwasser and J.F. Watson, J. Materials for Energy Systems, Vol. 3:54 (1981).CrossRefGoogle Scholar
  53. 52.
    M.W. Thompson, “Defects and Radiation Damage in Metals,” Cambridge Press (1969).Google Scholar
  54. 53.
    “Proceedings of the Third Topical Meeting on Fusion Reactor Materials,” J.B. Whitley, K.L. Wilson and F.W. Clinard, editors. Published in J. Nucl. Materials 122&123 (1984).Google Scholar
  55. 54.
    “Proceeding of the Second Topical Meeting on Fusion Reactor Materials,” R.E. Nygren, R.E. Gold and R.H. Jones, editors. Published in J. Nucl. Materials 103&104 (1981).Google Scholar
  56. 55.
    “Proceedings of the First Topical Meeting on Fusion Reactor Materials,” F.W. Wiffen, J.H. Devan and J.O. Stiegler, editors. Published in J. Nucl. Materials 85&86 (1979).Google Scholar
  57. 56.
    B.T. Kelly, “Irradiation Damage to Solids,” Pergamon Press (1966).Google Scholar
  58. 57.
    D.R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements,” National Technical Information Center, TID-26711-P1 (1976).CrossRefGoogle Scholar
  59. 58.
    J. Lindhard, M. Scharff and H.E. Schiott, Mat. Fys. Medd. Dan. Vid. Selsk. 33, no. 14 (1963).Google Scholar
  60. 59.
    J.H. Kinney, M.W. Guinan, Z.A. Munir, J. Nucl. Materials 122&123:1028 (1984).CrossRefGoogle Scholar
  61. 60.
    P.G. Lucasson and R.M. Walker, Phy. Rev. 127:485 (1962).ADSCrossRefGoogle Scholar
  62. 61.
    F.A. Garner, J. Nucl. Materials 122&123:459 (1984).ADSCrossRefGoogle Scholar
  63. 62.
    D.I.R. Norris, Rad. Effects 14, no. 1 and Rad. Effects 15, no. 1 (1972).Google Scholar
  64. 63.
    B.L. Eyre, in “Conf. on Fund. Aspects of Rad. Damage in Metals,” Gatlinburg, Tenn. (1975):729.Google Scholar
  65. 64.
    F.W. Clinard, Jr. and G.F. Hurley, J. Nucl. Materials 103&104:705 (1981).ADSCrossRefGoogle Scholar
  66. 65.
    R.J. Price, J. Nucl. Materials 46:268 (1973).ADSCrossRefGoogle Scholar
  67. 66.
    G.B. Engle and B.T. Kelly, J. Nucl. Materials 122&123:122 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. F. Smith
    • 1
  • J. B. Whitley
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations