Difference Methods and Their Role in the Theory of Coherent Phenomena

  • V. P. Karasev
  • L. A. Shelepin
Part of the The Lebedev Physics Institute Series book series (LPIS, volume 87)


The possibility of using the calculus of finite differences in the physics of coherent phenomena is examined. The dual nature of the second quantization operators is analyzed and the necessity of having a finite-difference description of coherent phenomena as well as the differential description is pointed out. A detailed discussion of finite-difference relations is given and their relationship with the generalized hypergeometric functions, the theory of orthogonal polynomials, and the Clebsch-Gordan coefficients is studied. It is shown that computational group theoretical methods and, in particular, the theory of angular momentum may be formulated in the language of finite differences. The results presented here may serve as a basis for some physical applications.


Angular Momentum Coherent State Orthogonal Polynomial Hypergeometric Function Continuous Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. H. Dicke, Phys. Rev., 93:99 (1954).ADSMATHCrossRefGoogle Scholar
  2. 2.
    L. A. Shelepin, Zh. Éksp. Teor. Fiz., 54:1463 (1968).Google Scholar
  3. 3.
    É. Sh. Teplitskii, Teor. Mat. Fiz., 2:399 (1970).CrossRefGoogle Scholar
  4. 4.
    T. M. Makhviladze and L. A. Shelepin, Zh. Éksp. Teor. Fiz., 62:2066 (1972).Google Scholar
  5. 5.
    V. M. Akulin, S. S. Alimpiev, N. V. Karlov, and L. A. Shelepin, Trudy FIAN, 87:141 (1976) (present volume).Google Scholar
  6. 6.
    R. Glauber, in: Quantum Optics, Academic Press (1969).Google Scholar
  7. 7.
    D. Klauder and E. Sudarshan, Fundamentals of Quantum Optics, Benjamin (1968).Google Scholar
  8. 8.
    R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev., A4:302,854 (1971).ADSGoogle Scholar
  9. 9.
    R. Bonifacio, D. M. Kim, and M. O. Scully, Phys. Rev., 187:441 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    P. W. Atkins and I. C. Dobson, Proc. Roy. Soc. London, A321:371 (1971).MathSciNetGoogle Scholar
  11. 11.
    T. M. Makhviladze and L. A. Shelepin, Yad. Fiz., 15:1081 (1972).Google Scholar
  12. 12.
    B. M. Levitan, The Theory of Generalized Displacement Operators [in Russian], Nauka, Moscow (1973).Google Scholar
  13. 13.
    V. M. Fain, Photons and Nonlinear Media [in Russian], Sov. Radio, Moscow (1972).Google Scholar
  14. 14.
    I. A. Malkin and V. I. Man’ko, FIAN Preprint No. 15 (1971).Google Scholar
  15. 15.
    A. O. Barut and L. Girardello, Commun. Math. Phys., 21:41 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    A. M. Perelomov, Commun. Math. Phys., 26:222 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    B. Judd, Second Quantization and Atomic Spectroscopy, Johns Hopkins Press (1967).Google Scholar
  18. 18.
    B. Judd and B. Wayborn, The Theory of Complex Atomic Spectra [Russian translation], Mir, Moscow (1973).Google Scholar
  19. 19.
    N. Jacobson, Lie Algebras [Russian translation], Mir, Moscow (1964).MATHGoogle Scholar
  20. 20.
    T. M. Makhviladze and L. A. Shelepin, Yad. Fiz., 15:608 (1972).Google Scholar
  21. 21.
    R. M. Asherova and Yu. F. Smirnov, Nucl. Phys., B4:399 (1968);ADSCrossRefGoogle Scholar
  22. 21a.
    R. M. Asherova and Yu. F. Smirnov, A144:116 (1970).Google Scholar
  23. 22.
    F. I. Fedorov, Zh. Éksp. Teor. Fiz., 35:493 (1958).Google Scholar
  24. 23.
    E. E. Tkharev and F. I. Fedorov, Yad. Fiz., 5:1.112 (1967).Google Scholar
  25. 24.
    L. A. Shelepin, Trudy FIAN, 30:253 (1964).Google Scholar
  26. 25.
    I. M. Lizin and L. A. Shelepin, Yad. Fiz., 9:440 (1969).Google Scholar
  27. 26.
    V. L. Ginzburg and L. D. Landau, Zh. Éksp. Teor. Fiz., 20:1064 (1950).Google Scholar
  28. 27.
    A. O. Gel’fond, The Calculus of Finite Differences [in Russian], Nauka, Moscow (1967).Google Scholar
  29. 28.
    L. M. Milne-Thomson, The Calculus of Finite Differences, Cambridge University Press (1951).Google Scholar
  30. 29.
    R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill (1962).MATHGoogle Scholar
  31. 30.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971);Google Scholar
  32. 30a.
    S. K. Godunov and V. S. Ryaben’kii, Difference Schemes. An Introduction to the Theory [in Russian], Nauka, Moscow (1973).Google Scholar
  33. 31.
    R. Richtmeyer and K. Morton, Difference Methods for Initial-Value Problems, Wiley (1967).Google Scholar
  34. 32.
    V. G. Kadyshevskii, R. M. Mir-Kasimov, and M. Friman, Yad. Fiz., 9:646 (1969);Google Scholar
  35. 32a.
    V. G. Kadyshevskii (Kadyshevsky) and M. D. Matveev, Nuovo Cimento, 55A:275 (1968);ADSGoogle Scholar
  36. 32b.
    V. G. Kadyshevskii, R. M. Mir-Kasimov, and N. B. Skachkov, Preprint Joint Institute for Nuclear Research E-2–3949, Dubna (1968).Google Scholar
  37. 33.
    Ya. A. Smorodinskii and L. A. Shelepin, Usp. Fiz. Nauk, 106:3 (1972).MathSciNetCrossRefGoogle Scholar
  38. 34.
    L. A. Shelepin, Trudy FIAN, 70:3 (1973).Google Scholar
  39. 35.
    V. P. Karasev and L. A. Shelepin, Teor. Mat. Fiz., 17:67 (1973).CrossRefGoogle Scholar
  40. 36.
    O. Madelung, Mathematical Methods of Physics [Russian translation], Fizmatgiz, Moscow (1961).Google Scholar
  41. 37.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Vols. 1 and 2, Nauka, Moscow (1973, 1974).Google Scholar
  42. 38.
    L. J. Slater, Generalized Hypergeometric Functions, Cambridge University. Press (1966).MATHGoogle Scholar
  43. 39.
    M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wisley (1962).MATHGoogle Scholar
  44. 40.
    V. P. Karasev, Trudy FIAN, 70:147 (1973).MathSciNetGoogle Scholar
  45. 41.
    A. P. Yutsis, (Jucys), I. B. Levinson, and V. V. Vanagas, Mathematical Methods in the Theory of Angular Momentum [in Russian], GIPNL Lit. SSR, Vilnyus (1960).Google Scholar
  46. 42.
    A. P. Yutsis (Jucys) and A. A. Bandzitis, The Theory of Angular Momentum in Quantum Mechanics [in Russian], Mintis, Vilnyus (1965).Google Scholar
  47. 44.
    S. I. Alisauskas and A. P. Jucys, J. Math. Phys., 12:594 (1971);MathSciNetADSMATHCrossRefGoogle Scholar
  48. 44.
    S. I. Alisauskas and A. P. Jucys, J. Math. Phys., 13:575 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  49. 45.
    S. I. Alishauskas (Alisauskas), Litov. Fiz. Sb., 13:831 (1973).Google Scholar
  50. 46.
    G. I. Kuznetsov, Teor. Mat. Fiz„, 18:358 (1974).Google Scholar
  51. 47.
    N. Ya. Vilenkin, Special Functions and the Theory of Group Representations [in Russian], Nauka, Moscow (1965).Google Scholar
  52. 48.
    I. I. GePfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of Rotation Groups and the Lorentz Group [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  53. 49.
    S.M. Ansary, J. Math. Phys., 9:1299 (1968);ADSCrossRefGoogle Scholar
  54. 49a.
    S.M. Ansary, Fortschr. Phys., 15:707, 729 (1967).CrossRefGoogle Scholar
  55. 50.
    D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).MATHGoogle Scholar
  56. 51.
    R. L. Anderson, R. Raczka, M. A. Rashid, and P. Winternitz, J. Math. Phys., 11:1050 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  57. 52.
    A. D’Adda, R. D’Auria, and G. Ponzano, Generalized 6j-Coefficients and Their Symmetries. Preprint, University of Torino (Turin), June, 1972.Google Scholar

Copyright information

© Consultants Bureau, New York 1978

Authors and Affiliations

  • V. P. Karasev
  • L. A. Shelepin

There are no affiliations available

Personalised recommendations