Josephson Junction Electronics: Materials Issues and Fabrication Techniques

  • M. R. Beasley
  • C. J. Kircher
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


Since the discovery of superconducting tunneling and the Josephson effect in the early 1960’s, the electronic applications of superconductivity have advanced steadily and now comprise an emerging technology with a potential for large technical and economic impact. Digital circuits using the ultra-fast, low-power switching characteristics of Josephson junctions are potentially the basisof a new class of very high performance computers [1, 2, 3, 4]. Superconducting QUantum Interference Devices (or SQUID’s) have been commercially available for some time [5, 6]. Recent advances [7, 8] in the use of superconducting tunnel junctions as high frequency detectors of electromagnetic radiation have been sufficiently successful that serious applications in radio astronomy seem imminent. Finally, new levels of metrology and standards based on superconductivity are well established [6]. Thus, like the high-field, high-current electrical power related applications of superconductivity, the electronic applications of superconductivity present major opportunities. And while they both depend on the general advance of the knowledge of superconductivity and superconducting materials, they also present their own unique set of materials problems. In this chapter we discuss the materials aspects of superconducting electronics with the objective of establishing clearly the essential materials requirements, the state of the art of the technology, outstanding problems, and prospects for the future.


Josephson Junction Tunnel Junction Base Electrode Superconducting Tunnel Junction Oxide Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Anacker, IEEE Spectrum 16, 26 (1979).Google Scholar
  2. 2.
    IBM Journal of Research and Development No.2 (1980). This entire issue is devoted to a description of the Josephs on junction computer and its associated technology.Google Scholar
  3. 3.
    J. Matisoo, Scientific American 242, 50 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    For a general review of the status of superconducting electronics, see IEEE Transactions on Electron Devices; Special Issue on Josephs on Junction Devices, October 1980.Google Scholar
  5. 5.
    For an introduction to SQUIDand their applications, see Superconductor Applications: SQUID’s and Machines, Eds. B. Schwartz and S. Foner, Plenum Press, New York and London, 1977.Google Scholar
  6. 6.
    For a useful overview, see: Future Trends in Superconductive Electronics, AIP Conference Proceedings No. 44, B. S. Deaver, M. Falco, J. H. Harris andS. A. Wolf, Editors, American Institute of Physics, New York, 1978.Google Scholar
  7. 7.
    T. M. Shen, P. L. Richards, R. E. Harris, and F. L. Lloyd, Appl. Phys. Lett. 36, 777(1980); Appl. Phys. Lett. 34, 345 (1979). Also see review by Richards in Ref. 4.ADSCrossRefGoogle Scholar
  8. 8.
    G.J. Dolan, T. G. Phillips and D. P. Woody, Appl. Phys. Lett. 34, 347 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    B. D. Josephson, Phys. Lett. 1, 251 (1962).ADSCrossRefMATHGoogle Scholar
  10. 10.
    B. D. Josephson, Advan. in Phys. 14, 419 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    See article by Fulton in Ref. 5.Google Scholar
  12. 12.
    See, for example, T. R. Gheewala, IBM Journal of Research and Development, 130 (1980);Google Scholar
  13. H. Zappe, IEEE Trans. Mag. MAG-13, 41 (1977); and references therein.ADSCrossRefGoogle Scholar
  14. 13.
    T. R. Gheewala, IEEE J. of Solid State Circuits, SC-14, 787 (1979)Google Scholar
  15. 14.
    N. R. Werthamer, Phys. Rev. 147, 255 (1966).ADSCrossRefGoogle Scholar
  16. 15.
    For a useful review of superconducting tunneling, see L. Solymar, Superconducting Tunneling and Applications, Wiley, N. York (1972).Google Scholar
  17. 16.
    See, for example, J. Matisoo, IBM Journal of Research and Developmentt, 24, 113 (1980).CrossRefGoogle Scholar
  18. 17.
    P. C. Arnett and D. J. Herrell, IEEE Trans, on Mag. MAG-15, 554 (1979).ADSCrossRefGoogle Scholar
  19. 18.
    For a discussion of the meaning and importance of this parameter, see S. Basavaiah, J. H. Greiner, H. H. Zappe and S. J. Singer, J. Appl. Phys. 51, 1702 (1980).ADSCrossRefGoogle Scholar
  20. 19.
    W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968);ADSCrossRefGoogle Scholar
  21. D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).Google Scholar
  22. 20.
    For a discussion of such ultimate limits see M. Tinkham, p. 269 in Ref. 6.Google Scholar
  23. 21.
    See article by J. Clarke in Ref. 4.Google Scholar
  24. 22.
    K. K. Likharev, Rev. of Mod. Phys. 51, 101 (1979).ADSCrossRefGoogle Scholar
  25. 23.
    See Ref. 15, Chap. 11.Google Scholar
  26. 24.
    For a good summary see R. C. Kautz, Journal of Research of the National Bureau of Standards 84, 247 (1979);Google Scholar
  27. W. H. Henkels and C.J. Kircher, IEEE Trans. Magn. MAG-13, 63 (1977).Google Scholar
  28. 25.
    J. H. Greiner, C.J. Kircher, S. Klepner, S. Lahiri, A. Warnecke, S. Basavaiah, E. Yen, J. M. Baker, P. R. Brosious, H.-C. W. Huang, M. Murakami and I. Ames, IBM Journal of Research and Development, 24, 195 (1980).CrossRefGoogle Scholar
  29. 26.
    See, for example, A. F. Hebard and R. H. Eick, J. Appl. Phys. 49, 339 (1978);ADSGoogle Scholar
  30. R. H. Havemann, C. A. Hamilton and R. E. Harris, J. Vac. Sci. Technol. 15, 392 (1978).Google Scholar
  31. 27.
    See R. F. Broom, S. Raider, A. Oosenbrug, R. Drake and W. Walter, in Ref. 4 and other references therein.Google Scholar
  32. 28.
    A. Warnecke, R. M. Patt, and C. J. Johnson Jr., Kodak Microelectronics Seminar Proceedings (INTERFACE ‘77), Eastman Kodak Company, Rochester, N.Y., 145 (1978).Google Scholar
  33. 29.
    M. Hatzakis, B. J. Canavello, and J. M. Shaw, IBM Journal of Research and Development 24, 452 (1980).CrossRefGoogle Scholar
  34. 30.
    C.J. Kircher and M. Murakami, SCIENCE 208, 944 (1980).ADSCrossRefGoogle Scholar
  35. 31.
    H.-C. W. Huang, S. Basavaiah, C.J. Kircher, E. P. Harris, M. Murakami, S. Klepner and J. H. Greiner, in Ref. 4 and other references therein.Google Scholar
  36. 32.
    I. Ames, IBM Journal of Research and Development 24, 188 (1980).CrossRefGoogle Scholar
  37. 33.
    A. E. Hill and G. R. Hoffman, Brit. J. Appl. Phys. 18, 13 (1967);ADSCrossRefGoogle Scholar
  38. J. Priest and H. L. Caswell, Transactions of the 8th National Vacuum Symposium, Pergamon Press, Elmsford, N.Y., 47 (1961).Google Scholar
  39. 34.
    S.K. Lahiri, S. Basavaiah and C. Kircher, Appl. Phys. Lett. 36, 334 (1980).ADSCrossRefGoogle Scholar
  40. 35.
    J. H. Greiner, J. Appl. Phys. 42, 5151 (1971); 45, 32 (1974).ADSCrossRefGoogle Scholar
  41. 36.
    J. M. Baker, C.J. Kircher, and J. W. Matthews, IBM Journal of Research and Development 24, 223 (1980).CrossRefGoogle Scholar
  42. 37.
    S. K. Lahiri, Thin Solid Films 41, 209 (1977).ADSCrossRefGoogle Scholar
  43. 38.
    C.J. Kircher and S. K. Lahiri, IBM Journal of Research and Development 24, 235 (1980).CrossRefGoogle Scholar
  44. 39.
    A. V. Brown, IBM Journal of Research and Development 24, 167 (1980).CrossRefGoogle Scholar
  45. 40.
    W. H. Henkels and J. H. Greiner, IEEE J. Solid State Circuits SC-14, 794 (1979).Google Scholar
  46. 41.
    Frank F. Tsui, IBM Journal of Research and Development 24, 243 (1980).CrossRefGoogle Scholar
  47. 42.
    S. K. Lahiri, J. Vac. Sci. Technol. 13, 148 (1976) and cited references;ADSCrossRefGoogle Scholar
  48. S. K. Lahiri and S. Basavaiah, J. Appl. Phys. 49, 2880 (1978).Google Scholar
  49. 43.
    J. Basson and M. Murakami, unpublished results.Google Scholar
  50. 44.
    J. M. Baker, Proc. of the 8th Internat. Vacuum Cong., Cannes, France, September 1980, to be published.Google Scholar
  51. 45.
    S.I. Raider and R. E. Drake, unpublished results.Google Scholar
  52. 46.
    J. H. Magerlein, to appear in Proceedings of the Applied Superconductivity Conference, September 1980, IEEE Trans. Magn. MAG-17 (1981).Google Scholar
  53. 47.
    R. F. Broom, A. Oosenbrug, and W. Walter, Appl. Phys. Lett. 37, 237 (1980); A. W. Kleinsasser and R. A. Burhman, Appl. Phys. Lett. (1980), to be published, and Bull. Am. Phys. Soc. 25, 197 (1980).ADSCrossRefGoogle Scholar
  54. 48.
    S. Basavaiah, M. Murakami and C. J. Kircher, J. de Physique 39, C6–1247 (1978).Google Scholar
  55. 49.
    M. Murakami and P. Chaudhari, Thin Solid Films 46, 109 (1977).ADSCrossRefGoogle Scholar
  56. 50.
    M. Murakami, J. Angelillo, H.-C. W. Huang, A. Segmuller and C.J. Kircher, Thin Solid Films 60, 1 (1979).ADSCrossRefGoogle Scholar
  57. 51.
    M. Murakami, Thin Solid Films 55, 101 (1978).ADSCrossRefGoogle Scholar
  58. 52.
    S. K. Lahiri, J. Vac. Sci. Technol. 13, 148 (1976).ADSCrossRefGoogle Scholar
  59. 53.
    M. Murakami and C.J. Kircher, IEEE Trans. Magn. MAG-15, 443 (1979).ADSCrossRefGoogle Scholar
  60. 54.
    M. F. Ashby, Acta. Metall. 29, 887 (1972).Google Scholar
  61. 55.
    M. Murakami, Thin Solid Films 59, 105 (1979);ADSCrossRefGoogle Scholar
  62. 56.
    T. S. Kuan and M. Murakami, Bui. Am. Phys. Soc. 25, 433 (1980).Google Scholar
  63. M. Murakami, J. Appl. Phys. to be published.Google Scholar
  64. 57.
    C. B. Duke, Tunneling in Solids (Solid State Physics Series, Sup. 10), Academic Press, N.Y. (1969).Google Scholar
  65. 58.
    K. H. Gundlach, J. Appl. Phys. 44, 5005 (1973).ADSCrossRefGoogle Scholar
  66. 59.
    S. Basavaiah, J. M. Eldridge and J. Matisoo, J. Appl. Phys. 45, 457 (1974).ADSCrossRefGoogle Scholar
  67. 60.
    J. W. Matthews, C.J. Kircher and R. E. Drake, Thin Solid Films 47, 95 (1977).ADSCrossRefGoogle Scholar
  68. 61.
    F. A. Padovani, in Semiconductors and Semimetals V.7A, Academic Press, N.Y. (1970).Google Scholar
  69. 62.
    J. H. Magerlein, private communication.Google Scholar
  70. 63.
    S. Basavaiah and S. K. Lahiri, J. Appl. Phys. 45, 2773 (1974).ADSCrossRefGoogle Scholar
  71. 64.
    P.C. Karulkar and J. E. Nordman, J. Vac. Sci. Technol. 17, 462 (1980); S. I. Raider, R. W. Johnson, R. E. Drake, and R. A. Pollak, Proc. Electrochem. Soc. Mtg., Hollywood, Florida, October 7, 1980, to be published.ADSCrossRefGoogle Scholar
  72. 65.
    G. B. Arnold, Phys. Rev. B. 18, 1076 (1978).ADSCrossRefGoogle Scholar
  73. 66.
    W. J. Gallagher, Phys. Rev. B. 22 (1980, to be published).Google Scholar
  74. 67.
    Z. Ovadyahu and O. Entin-Wohlman, J. Phys. F: Metal Phys. 9, 2091 (1979).ADSCrossRefGoogle Scholar
  75. 68.
    J. M. Eldridge and D. W. Dong, Surface Science 40, 512 (1973).ADSCrossRefGoogle Scholar
  76. 69.
    F. P. Fehlner and N. F. Mott, Oxidation of Metals 2, 59 (1970).CrossRefGoogle Scholar
  77. 70.
    A. T. Fromhold Jr., Theory of Metal Oxidation, North-Holland, N.Y. (1976).Google Scholar
  78. 71.
    J. M. Eldridge, Surface Science 40, 531 (1973).ADSCrossRefGoogle Scholar
  79. 72.
    J. C. Villeiger and G. Matheron, Proceedings of the International SQUID Conference, Berlin, Germany (May, 1980).Google Scholar
  80. 73.
    A. F. Hebard and R. H. Eick, J. Appl. Phys. 49, 339 (1978).ADSGoogle Scholar
  81. 74.
    A. F. Fromhold, Jr. and J. M. Baker, J. Appl. Phys., tobe published.Google Scholar
  82. 75.
    J. H. Greiner, J. Appl. Phys. 42, 5151 (1971).ADSCrossRefGoogle Scholar
  83. 76.
    J. R. Gavaler, A. I. Braginski, M. Ashkin, and A. T. Santhanam, Proceedings of the Third Conference on Superconductivity in d- and f-Band Metals, La Jolla, CA (1979).Google Scholar
  84. 77.
    For Pb-In-Au, see Ref. 31 and references therein, and for Pb-Bi see Ref. 25 and references therein.Google Scholar
  85. 78.
    See Ref. 27 and references therein.Google Scholar
  86. 79.
    R. Hammond, IEEE Trans. Magn. MAG-II, 201 (1975).ADSCrossRefGoogle Scholar
  87. 80.
    J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).ADSCrossRefGoogle Scholar
  88. 81.
    S. Paidassi and J. Spitz, J. Less Common Metals 61, 213 (1978).CrossRefGoogle Scholar
  89. 82.
    K. Keskar, T. Yamashita, and Y. Onodera, Japan. J. Appl. Phys. 10, 370 (1971).ADSCrossRefGoogle Scholar
  90. 83.
    J. R. Gavalar, M. A. Janocko and C. K. Jones, Appl. Phys. Lett. 19, 305 (1971).ADSCrossRefGoogle Scholar
  91. 84.
    R. B. Zubeck, C. N. King, D. F. Moore, T. W. Barbee, A. B. Hallack, J. Salem, and R. M. Hammond, Thin Solid Films 40, 249 (1977).ADSCrossRefGoogle Scholar
  92. 85.
    J. R. Gavaler, IEEE Trans. MAG-15, 623 (1979).ADSGoogle Scholar
  93. 86.
    S. A. Wolf, L L. Singer, E. J. Cukauskas, T. L. Francavilla, and E. F. Skelton, J. Vac. Sci. Technol. 17, 411 (1980).ADSCrossRefGoogle Scholar
  94. 87.
    J. Jackel, Proceedings of the 2nd IC-SQUID Conference, Berlin, Germany (May, 1980).Google Scholar
  95. 88.
    R. E. Howard, E. L. Hu, L. D. Jackel, L. A. Fetter, and R. M. Bosworth, Appl. Phys. Lett. 35, 879 (1980).ADSCrossRefGoogle Scholar
  96. 89.
    E. L. Hu, R. E. Howard, L. D. Jackel, L. A. Fetter and D.M. Tennant, in Ref. 4.Google Scholar
  97. 90.
    G. M. Daalmaus and J. Zwier, in Ref. 6; also J. E. Mooij, private c omm unication.Google Scholar
  98. 91.
    D. F. Moore, J. M. Rowell, and M. R. Beasley, Solid State Commun. 60, 305 (1976).CrossRefGoogle Scholar
  99. 92.
    D. F. Moore, R. B. Zubeck and M. R. Beasley, Bull. Am. Phys. Soc. 22, 289 (1977).Google Scholar
  100. 93.
    J. M. Rowell and P. H. Schmidt, Appl. Phys. Lett. 29, 622 (1976).ADSCrossRefGoogle Scholar
  101. 94.
    R. H. Buitrago, A. M. Goldman, L. E. Toth, and R. Cantor, IEEE Trans. Magn. MAG-15, 585 (1979).ADSGoogle Scholar
  102. 95.
    J. Kwo, R. H. Hammond, and T. H. Geballe, Bull. Am. Phys. Soc. 24, 455 (1979).Google Scholar
  103. 96.
    D. F. Moore, R. B. Zubeck, J. M. Rowell and M. R. Beasley, Phys, Rev. 20, 2721 (1979).ADSCrossRefGoogle Scholar
  104. 97.
    D. A. Rudman, R. E. Howard, D. F. Moore, R. B. Zubeck, and M. R. Beasley, IEEE Trans. Magn. MAG-15, 582 (1979).ADSCrossRefGoogle Scholar
  105. 98.
    R. E. Howard, D. A. Rudman, and M. R. Beasley, Appl. Phys. Lett. 33, 671 (1978).ADSCrossRefGoogle Scholar
  106. 99.
    J. Miller, private communication.Google Scholar
  107. 100.
    J. P. Garno, J. Appl. Phys. 48, 4627 (1977).ADSCrossRefGoogle Scholar
  108. 101.
    A. F. Hebard and J. R. Arthus, Bull. Am. Phys. Soc. 22, 374 (1977).Google Scholar
  109. 102.
    D. A. Rudman, private communication; H. R. Kroger, private communication.Google Scholar
  110. 103.
    J. A. Strozier, D. L. Miller, O. F. Kammerer, and M. Strongin, J. Appl. Phys. 47, 1611 (1975).ADSCrossRefGoogle Scholar
  111. 104.
    J. N. Miller, Ph.D. Thesis, Stanford University (1979).Google Scholar
  112. 105.
    D. A. Radman and M. R. Beasley, Appl. Phys. Lett. 36, 1010 (1980).ADSCrossRefGoogle Scholar
  113. 106.
    Y. Tarutani, K. Yamada, and U. Kawaba, Appl. Phys. Lett. 37, 239 (1980).ADSCrossRefGoogle Scholar
  114. 107.
    J. Kwo, R. H. Hammond, and T. H. Geballe, submitted for publication.Google Scholar
  115. 108.
    R. B. Laibowitz, V. Sadagopan and P. E. Seiden, Physics Lett. 31A, 133 (1970).ADSCrossRefGoogle Scholar
  116. 109.
    J. T. C. Yeh and C. C. Tsuei, IEEE Trans. Magn. MAG-15, 591 (1979).ADSCrossRefGoogle Scholar
  117. 110.
    C. C. Tsuei, W. L. Johnson, R. B. Laibowitz and J. M. Viggiano, Solid State Commun. 24, 615 (1977). Also D. Kimhi and T. H. Geballe, submitted for publication.ADSCrossRefGoogle Scholar
  118. 111.
    W. L. Carter, private communication.Google Scholar
  119. 112.
    T. P. Orlando and R. Hammond, private communication.Google Scholar
  120. 113.
    P. Cardinne, J. Nordman, and M. Renard, Revue de Phys. Appliquee 9, 167 (1974).CrossRefGoogle Scholar
  121. 114.
    Wo Y. Lum and T. Van Duzer, J. Appl. Phys. 48, 1693 (1976); J. Seto, Ph.D. Dissertation, University of California (1975).Google Scholar
  122. 115.
    M. Schyfter, J. Maah-Sango, N. Raley, R. Ruby, B. T. Ulrich and T. Van Duzer, IEEE Trans. Magn. MAG-13, 862 (1977).ADSCrossRefGoogle Scholar
  123. 116.
    L. B. Roth, J. A. Roth, and P. M. Schwartz in Ref. 6.Google Scholar
  124. 117.
    H. Kroger, C.N. Potter and D. W. Jillie, IEEE Trans. Magn. MAG-15, 488 (1979).ADSCrossRefGoogle Scholar
  125. 118.
    See article by H. Kroger in Ref. 4.Google Scholar
  126. 119.
    E. L. Hu, L. D. Jackel, A. R. Strnad, R. W. Epworth, R. F. Lucey, C. A. Zogg, and E. Gornik, Appl. Phys. Lett. 32, 584 (1978).ADSCrossRefGoogle Scholar
  127. 120.
    R. E. Howard, Appl. Phys. Lett. 33, 1034 (1978); see also Ref. 90.ADSCrossRefGoogle Scholar
  128. 121.
    R. B. van Dover, R. E. Howard and M. R. Beasley, IEEE Trans. Magn. MAG-15, 574 (1979).ADSCrossRefGoogle Scholar
  129. 122.
    M. D. Feuer and D. E. Prober, Appl. Phys. Lett. 36, 226 (1980).ADSCrossRefGoogle Scholar
  130. 123.
    M. D. Feuer and D.E. Prober, to appear in Proceedings of the 1980 Applied Superconductivity Conference, September 1980.Google Scholar
  131. 124.
    W.J. Skocpol, M. R. Beasley and M. Tinkham, J. Appl. Phys. 45, 4054 (1974);ADSCrossRefGoogle Scholar
  132. M. Tinkham, M. Octavio and W. J. Skocpol, J. Appl. Phys. 48, 1311 (1977); see also ref. 20.ADSCrossRefGoogle Scholar
  133. 125.
    R. B. Laibowitz, A.N. Broers, J. T. C. Yeh, and J. M. Viggiano, Appl. Phys. Lett. 35, 891 (1979).ADSCrossRefGoogle Scholar
  134. 126.
    A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys. Lett. 29, 596 (1976).ADSCrossRefGoogle Scholar
  135. 127.
    R. F. Voss, R. B. Laibowitz, M. B. Ketchen and A. N. Broers, Proceedings of the 2nd IC-SQUID Conference, Berlin, Germany (May, 1980); R. F. Voss, R. B. Laibowitz, and A. N. Broers, to appear in Appl. Phys. Lett.Google Scholar
  136. 128.
    W.J. Skocpol, M. R. Beasley and M. Tinkham, J. Low Temp. Phys. 16, 145 (1974).ADSCrossRefGoogle Scholar
  137. 129.
    M. A. Janocko, J. R. Gavaler and C. K. Jones, Proceedings of the 1972 Applied Superconductivity Conference, Annapolis, MD, IEEE Pub. No. 72CM0682–5-TABSC.Google Scholar
  138. 130.
    T. Fujita, S. Kosaka, T. Ohtsuha, and V. Onodera, IEEE Trans. Magn. MAG-11, 739 (1975).ADSCrossRefGoogle Scholar
  139. 131.
    D. W. Palmer, H. A. Notarys, and J. E. Mercereau, Appl. Phys. Lett. 25, 527 (1974).ADSCrossRefGoogle Scholar
  140. 132.
    C. T. Wu and C. M. Falco, Appl. Phys. Lett. 30, 609 (1977); J. Appl. Phys. 49, 361 (1978); C. M. Falco in Ref. 6.ADSCrossRefGoogle Scholar
  141. 133.
    M. A. Janocho, J. R. Gavaler, and C. K. Jones, IEEE Trans. Magn. MAG-11, 880 (1975).ADSCrossRefGoogle Scholar
  142. 134.
    R. B. Laibowitz, G.G. Tsuei, J.J. Guomo, J. F. Ziegler, and M. Hatzakis, IEEE Trans. Magn. MAG-11, 883 (1975).ADSCrossRefGoogle Scholar
  143. 135.
    F.J. Rachford and E. J. Gukauskas, Appl. Phys. Lett. 881 (1979).Google Scholar
  144. 136.
    J. M. Glaassen, Appl. Phys. Lett. 36, 772 (1980).Google Scholar
  145. 137.
    S. Wolf and W. H. Lowry, Phys. Rev. Lett. 39, 1038 (1977).ADSCrossRefGoogle Scholar
  146. 138.
    For a recent review, see Proceedings of the Conference on Inhomogeneous Superconductors, AIP Gonf. Proc. No. 58.Google Scholar
  147. 139.
    J. Warlaumount, and R.A. Buhrman, IEEE Trans. Magn. MAG-15, 570 (1979).Google Scholar
  148. 140.
    J. Warlaumount, J, G. Brown, andR. A. Buhrman, Appl. Phys. Lett. 34, 415 (1979).ADSCrossRefGoogle Scholar
  149. 141.
    J. Warlaumount, J. G. Brown, T. Foxe, and R. A. Buhrman, Phys. Rev. Lett. 43, 169 (1979).ADSCrossRefGoogle Scholar
  150. 142.
    R. B. van Dover, R. E. Howard, and M. R. Beasley, IEEE Trans. Magn. MAG-15, 574 (1979).ADSCrossRefGoogle Scholar
  151. 143.
    R.B. van Dover, A. de Lozanne, R. E. Howard, W. G. McLean, and M. R. Beasley, to appear in Appl. Phys. Lett.Google Scholar
  152. 144.
    A. M. Silver, A. B. Ghase, M. McGoll, and M. F. Mellea, in Ref. 6Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. R. Beasley
    • 1
  • C. J. Kircher
    • 2
  1. 1.Department of Applied PhysicsStanford UniversityUSA
  2. 2.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations