Phase Diagrams of Superconducting Materials

  • R. Flükiger
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


It has become evident in the last years that the formation conditions of an intermetallic compound can have a strong influence on its superconducting properties. The “intermetallic compounds” represent in principle all possible combinations between two or more metallic elements, but has in practice been extended to cases where one constituent is a nonmetal, i.e., B, C, N, S, etc. For several high TC materials, the maximum value of TC was found for atomic compositions corresponding to an extreme limit of the homogeneity range of the superconducting phase, stable at high temperatures only. At equilibrium, the formation temperatures of the most interesting high TC superconducting phases are situated well above 1500°C; it is thus of fundamental interest to know accurately the high temperature relationships of this portion of the phase diagram. The precise knowledge of the formation conditions of a superconducting phase is a necessary condition for the preparation of homogeneous, well-characterized alloys suitable for low temperature measurements. The resulting consequence is that investigations up to 2000°C and more must be carried out for a better phenomenological understanding of superconducting properties in the temperature range below 23 K. This statement is well accepted at present, but does not correspond to the way superconductors have been studied. A review of the published data shows that a large number of the investigations on superconducting materials have been made on insufficiently characterized samples, particularly before 1970.


Phase Field Rhombohedral Phase Phase Limit Specific Heat Measurement Homogenization Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Flükiger, R. Baillif, and E. Walker, Mat. Res. Bull. 13, 743 (1978).CrossRefGoogle Scholar
  2. 2.
    R. Roberge and J-L. Fihey, J. Appl. Phys. 48, 1327 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    H. Devantay, J. L. Jorda, M. Decroux, J. Müller, and R. Flükiger (to be published).Google Scholar
  4. 4.
    J. Bevk and J. P. Harbison, J. Mat. Sci. 14, 1459 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    R. Flükiger, Filamentary A15 Superconductors, editors, M. Suenaga and A.F. Qark, Plenum Press (1980), p. 299.CrossRefGoogle Scholar
  6. 6.
    R. Flükiger and J. L. Jorda, Applications of Phase Diagrams in Metallurgy and Ceramics, editor, M. Carter, NBS, Special Publication No. 196 (1978) p. 375.Google Scholar
  7. 7.
    J. L. Jorda, R. Flükiger, and J. Muller, J. Mat. Sci. 13, 2471 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    A. Paoli and R. Flükiger, unpublished results.Google Scholar
  9. 9.
    A. Junod, J. L. Staudenmann, J. Muller, and P. Spitzli, J. Low Temp. Phys. 5, 25 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    R. Flükiger, J. L. Jorda, A. Junod, P. Fischer, Appl. Phys. Comm. (to be published).Google Scholar
  11. 11.
    W. W. Wendtlandt, Thermal Methods of Analysis, 2nd Edition, P.J. Elving and I. M. Kotthoff, Editors, John Wiley & Sons, New York (1974).Google Scholar
  12. 12.
    L. N. Latyev, V. Ya. Chekhovskoi, and E. N. Shestakov, High Temp. High Pressures 679 (1972).Google Scholar
  13. 13.
    C. Susz, R. Flükiger, J. L. Jorda, J. Muller, and R. M. Waterstrat, J. Less-Common Metals 62, 25 (1978).CrossRefGoogle Scholar
  14. 14.
    R. Flükiger, C. Susz, F. Heiniger, and J. Muller, J. Less-Common Metals 40, 103 (1975).CrossRefGoogle Scholar
  15. 15.
    R. Flükiger, unpublished results.Google Scholar
  16. 16.
    M. Camacho and R. Flükiger, unpublished results.Google Scholar
  17. 17.
    C. Susz, Ph.D. Thesis No.1758, University of Geneva (1976).Google Scholar
  18. 18.
    E. Röschel, O. Loebich Jr. and C. J. Raub, Z. Metallkde 64, 359 (1973).Google Scholar
  19. 19.
    P. Duwez, Progress in Solid State Chemistry, Pergamon Press, New York, Vol. 3, p. 377 (1966).Google Scholar
  20. 20.
    R. Flükiger, K. Yvon, C. Susz, R. Roggen, A. Paoli, and J. Muller, J. Less-Common Metals 32, 207 (1973).CrossRefGoogle Scholar
  21. 21.
    R. Flükiger and J. L. Jorda, Sol. State Comm. 22, 109 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Sweedler, D. G. Schweizer, and G. W. Webb, Phys. Rev. Lett. 33, 168 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    B. Besslein, G. Ischenko, S. Klaumünzer, P. Müller, H. H. Neumllller, K. Schmelz, and H. Adrian,Phys. Lett. 53A, 49 (1975).ADSGoogle Scholar
  24. 24.
    E. C. van Reuth, R. M. Waterstrat, R. D. Blaugher, R. A. Hein, and J. E. Cox, Proc. LTIO, Ed. Viniti, Moscow, Vol. 1b. 137 (1967).Google Scholar
  25. 25.
    E. C. van Reuth and R. M. Waterstrat, Acta Cryst. B24, 186 (1968).Google Scholar
  26. 26.
    R. Flükiger, Ph.D. Thesis No. 1570, University of Geneva (1972).Google Scholar
  27. 27.
    R. Flükiger, J. L. Staudenmann, and P. Fischer, J. Less-Common Metals 50, 253 (1976).CrossRefGoogle Scholar
  28. 28.
    A. Guha, M. P. Sarachik, F. W. Smith, and L. R. Testardi, Phys. Rev. B18, 9 (1978).ADSGoogle Scholar
  29. 29.
    B. N. Das, J. E. Cox, R. W. Huber, and R. A. Meussner, Metall, Trans. 8A, 541 (1977).Google Scholar
  30. 30.
    J. Labbe and E. C. Van Reuth, Phys. Rev. Lett. 24, 1232 (1970).ADSCrossRefGoogle Scholar
  31. 31.
    A. Junod, P. Bellon, R. Flükiger, F. Heiniger, and J. Muller, Phys. Kond. Materie 15, 133 (1972).ADSCrossRefGoogle Scholar
  32. 32.
    P. Spitzli, R. Flükiger, F. Heiniger, A. Junod, J. Muller, and J. L. Staudenmann, J. Phys. Chem. Sol. 31, 1531 (1970).ADSCrossRefGoogle Scholar
  33. 33.
    A. Junod, R. Flükiger, A. Treyvaud, and J. Muller, Solid State Commun. 19, 265 (1976).ADSCrossRefGoogle Scholar
  34. 34.
    E. Z. Kurmaev, F. Werfel, O. Brümmer, and R. Flükiger, Sol. State Commun. 22, 375 (1975).CrossRefGoogle Scholar
  35. 35.
    R. Flükiger, Proc. IV Int. Conf. on Solid Compounds of Transition Elements, Geneva, 1973, p. 206.Google Scholar
  36. 36.
    B.W. Roberts, Superconducting Materials and Some of Their Properties, Westinghouse Report No. 63-RL-3252m, 1963, p. 38.Google Scholar
  37. 37.
    G. Bongi, O. Fischer, H. Jones, R. Flükiger, and A. Treyvaud, Helv. Phys. Acta 45, 13 (1972).Google Scholar
  38. 38.
    R. Flükiger, A. Paoli, and J. Muller, Solid State Commun. 14, 443 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    B. T. Matthias, E. A. Wood, E. Corenzwit, V. B. Bala, J. Phys. Chem. Solids 1, 188 (1956).ADSCrossRefGoogle Scholar
  40. 40.
    C. C. Koch and J. J. Scarbrough, Phys. Rev. B3, 742 (1971).ADSGoogle Scholar
  41. 41.
    P. Spitzli, Phys. Kond. Materie 13 , 22 (1971).Google Scholar
  42. 42.
    R. Flükiger, A. Junod, R. Baillif, P. Spitzli, A. Treyvaud, A A. Paoli, H. Devantay, and J. Muller, Sol. State Commun. 23, 699 (1977).ADSCrossRefGoogle Scholar
  43. 43.
    G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Phys. Rev. B20, 3647 (1979).ADSGoogle Scholar
  44. 44.
    R. Flükiger, A. Paoli, R. Roggen, K. Yvon, and J. Muller, Sol. State Commun. 11, 61 (1972).ADSCrossRefGoogle Scholar
  45. 45.
    R. M. Waterstrat and R. C. Manuszewski, Noble Metal Constitution Diagrams, Parts I and II, NBS Reports Nos. 10571 (1971) and 73–415 (1975).Google Scholar
  46. 46.
    H. L. Gegel, D. C. Yeh, J. T. Pajor and J. C. Ho, IEEE Trans. Magnetics MAG-13, 788 (1977).ADSCrossRefGoogle Scholar
  47. 47.
    G. Zlegier, J. Appl. Phys. 49, 4141 (1978).ADSCrossRefGoogle Scholar
  48. 48.
    R. Flüklger, R. Baillif, J. Muller, andK. Yvon, Solid State Commun. (to be published).Google Scholar
  49. 49.
    B. A. Smith, Mat. Res. Bull. 14, 431 (1979).CrossRefGoogle Scholar
  50. 50.
    R. Baillif, K. Yvon, R. Flükiger, and J. Muller, J. Low Temp. Phys. 37, 476 (1979).CrossRefGoogle Scholar
  51. 51.
    J. W. Hafstrom, G. S. Knapp, and A. T. Aldred, Phys. Rev. B.17, 2 892 (1978).Google Scholar
  52. 52.
    B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 (1964).ADSCrossRefGoogle Scholar
  53. 53.
    R. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. 24A, 315 (1967).ADSGoogle Scholar
  54. 54.
    E. Hembach, K. Tachikawa, and S. Takano, Phil. Mag. 21, 869 (1970).ADSCrossRefGoogle Scholar
  55. 55.
    M. Jurisch, Intermetallische Phasen, Ed: Zentralinstitut für Festörperphysik and Werkstoff-forschung, Dresden (1976), p. 65.Google Scholar
  56. 56.
    A. Junod, J. Muller, H. Rietschel, and E. Schneider, J. Phys. Chem. Solids 39, 317 (1978).ADSCrossRefGoogle Scholar
  57. 57.
    A. Junod, J. Phys. F: Met. Phys. 8, 1891 (1978)ADSCrossRefGoogle Scholar
  58. 58.
    L. Brewer, High-Strength Materials, Victor F. Zackay, Ed., John Wiley & Sons, Inc., New York (1964), p. 1.Google Scholar
  59. 59.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, Ed. McGraw-Hill, New York (1958).Google Scholar
  60. 60.
    R. P. Elliott, Constitution of Binary Alloys, McGraw-Hill, New York (1965).Google Scholar
  61. 61.
    F. A. Shunk, Constitution of Binary Alloys, Second Supplement, McGraw-Hill, New York (1969).Google Scholar
  62. 62.
    W. G. Moffatt, The Handbook of Binary Phase Diagrams, General Electric Report No. ISN 0–931 690–00-5.Google Scholar
  63. 63.
    R. Flükiger, P. Spitzli, F. Heiniger, and J. Muller, Phys. Lett. 29A, 407 (1969).ADSGoogle Scholar
  64. 64.
    E. Röschel and E. Raub, Z. Metallkde 61, 71 (1970).Google Scholar
  65. 65.
    E. Raub, H. Beeskov, and D. Menzel, Z. Metallkde 52, 189 (1961).Google Scholar
  66. 66.
    J. R. Gavaler, M. A. Janocko, and C. K. Jones, Proc. LT 13 Vol, 3 (Plenum, New York), p. 558 (1974).Google Scholar
  67. 67.
    A, L, Giorgi, B. T. Matthias, andG. R. Stewart (to be published).Google Scholar
  68. 68.
    J. I. Federer and R. M. Steele, Nature 205, 587 (1965).ADSCrossRefGoogle Scholar
  69. 69.
    B. T. Matthias, Phys. Rev. 97, 74 (1955).ADSCrossRefGoogle Scholar
  70. 70.
    F. Heiniger, Phys. Kond. Materia 5, 243 (1966).ADSCrossRefGoogle Scholar
  71. 71.
    K. Yvon, Current Topics in Materials Science, E. Kaldis, Ed., North -Holland, New York, Vol. 3 (1979), p. 53.Google Scholar
  72. 72.
    A. L Giorgi and B. T. Matthias, Phys. Rev. B17, 2160 (1978).ADSGoogle Scholar
  73. 73.
    J. K. Hülm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).ADSCrossRefGoogle Scholar
  74. 74.
    B. T. Matthias, Phys. Lett. 25A, 226 (1967).ADSGoogle Scholar
  75. 75.
    E. Bucher, F. Laves, J. Muller, and H. V. Philipsbom, Phys. Lett. 8, 27 (1964).ADSCrossRefGoogle Scholar
  76. 76.
    B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens, and J. P. Maitz, Science 156, 645 (1967).ADSCrossRefGoogle Scholar
  77. 77.
    B. C. Giessen, P. N. Dangel, and N. J. Grant, J. Less-Common Metals 13, 62 (1967).CrossRefGoogle Scholar
  78. 78.
    R. M. Waterstrat and R. C. Manuszewski, J. Less-Common Metals 32, 31 (1973).Google Scholar
  79. 79.
    S.A. Nemnonov, E. Z. Kurmaev, B. Kh. Ishinukhametov, V. B. Belash, Phys. State Sol. B46, 17 (1971).Google Scholar
  80. 80.
    E. Z. Kurmaev, V. P. Belash, S.A. Nemnonov, and A. S. Shulakov, Phys. Stat. Solidi 61, 365 (1974).ADSCrossRefGoogle Scholar
  81. 81.
    E. Z. Kurmaev, F. Werfel, O. Brlimmer, and R. Flükiger, Solid State Commun. 21, 239 (1977).ADSCrossRefGoogle Scholar
  82. 82.
    B. C. Giessen, R. Koch, and N. J. Grant, Trans. AIME 230, 1268 (1964).Google Scholar
  83. 83.
    S. Moehlecke, D. E. Cox, and A. R. Sweedler, Sol. State Commun. 23, 703 (1977).ADSCrossRefGoogle Scholar
  84. 84.
    A. G. Knapton, J. Inst. Met. 87, 28 (1958).Google Scholar
  85. 85.
    A. Taylor, N. Y. Doyle, and B. J. Kagle, J. Less-Common Metals 4, 436 (1962).CrossRefGoogle Scholar
  86. 86.
    S.J. Michalek and J. H. Brophy, Trans AIME 227, 1047 (1963).Google Scholar
  87. 87.
    V.N. Svechnikov, G. P. Dmitrieva, G. F. Kobzenko, and A. K. Shurin, Dokl. Akad. Nauk SSSR IM, 158, 668 (1964).Google Scholar
  88. 88.
    R. D. Blaugher, R. E. Hern, J. E. Cox, and R. M. Waterstrat, J. Low Temp. Phys. 1, 539 (1969).ADSCrossRefGoogle Scholar
  89. 89.
    D. C. Johnston, Solid State Commun. 11, 1751 (1972).ADSCrossRefGoogle Scholar
  90. 90.
    V. N. Eremenko and T. D. Shtepa, Russ. Met. Eng. Tr. 6, 127 (1970).Google Scholar
  91. 91.
    H. Nishimura and T. Hiramatsu, Nippon Kinzoku Gakkaishi 21, 469 (1957).Google Scholar
  92. 92.
    P. Pietrokowsky, J. Inst. Metals 90, 434 (1961).Google Scholar
  93. 93.
    A. Junod, R. Flükiger, and J. Muller, J. Phys. Chem. Solids 37, 27 (1976).ADSCrossRefGoogle Scholar
  94. 94.
    E. Vielhaber and H. L. Luo, Solid State Commun. 5, 221 (1967).ADSCrossRefGoogle Scholar
  95. 95.
    F. Heiniger and L. Wallden, Phys. stat. sol. (a) 5, 75 (1971).ADSCrossRefGoogle Scholar
  96. 96.
    A. Müller and H. Voigt, Phys. Kondens. Materie 46, 185 (1972).CrossRefGoogle Scholar
  97. 97.
    D. I. Bardos, R. M. Waterstrat, T. J. Rowland and J. B. Darby Jr., J. Low Temp. Phys. 3, 509 (1970).ADSCrossRefGoogle Scholar
  98. 98.
    R. Flükiger (to be published).Google Scholar
  99. 99.
    A. M. Clogstonand, V. Jaccarino, Phys. Rev. 121, 1357 (1961).ADSCrossRefGoogle Scholar
  100. 100.
    J. Labbe and J. Friedel, J. Physique 27, 153, 303 (1966).Google Scholar
  101. 101.
    R. Flükiger, S. Foner, E. J. McNiff Jr., and Ø. Fischer, Solid State Commun. 30, 723 (1979).ADSCrossRefGoogle Scholar
  102. 102.
    S. Foner, E.J. MéNiff Jr., B. T. Matthias, T. H. Geballe, R. H. Willens, and E. Corenzwit, Phys. Lett, 31A, 349 (1970).ADSGoogle Scholar
  103. 103.
    S. Foner, E.J. McNiff Jr., L. J. Vieland, A. Wicklund, R. E. Miller, and G. W. Webb, IEEE Trans. Magnetics MAG-9, 318 (1976).Google Scholar
  104. 104.
    S. Foner and E. J. McNiff Jr., Phys. Lett. 58A, 318 (1976).ADSGoogle Scholar
  105. 105.
    G. H. Bongi, R. Flükiger, A. Treyvaud, Ø. Fischer, H. Jones, and D. Schneider, J. Low Temp. Phys. 17, 223 (1974).ADSCrossRefGoogle Scholar
  106. 106.
    D. B. Montgomery and H. Wizgall, Phys. Lett. 22, 48 (1966).ADSCrossRefGoogle Scholar
  107. 107.
    J. Muller, R. Flükiger, A. Junod, F. Heiniger, and C. Susz, Proc. LT13, Plenum Press, Vol. 3, p. 446 (1972).Google Scholar
  108. 108.
    H. A. Brüning, Philips Research Reports 22, 349 (1967).Google Scholar
  109. 109.
    E. M. Savitskii, Yu. V. Efimov, K. Eichler, and P. Paiifler, Wiss. Zeitschrift der Techn. Universität Dresden 29, 675 (1978).Google Scholar
  110. 110.
    Ju. Kocerzinski, O. G. Kulik, and E. A. Schischkin, Stukt. faz., fazovoe prevr. i diagr. sost. metal. System“, Moskva: Izd. Nauka” (1974), 136.Google Scholar
  111. 111.
    E. S. Greiner and H. Mason, J. Appl. Phys. 35, 3058 (1964).ADSCrossRefGoogle Scholar
  112. 112.
    C.J. Doherty, J. M. Poate and R.T.H. Voorhoeve, J. Appl. Phys. 48, 2050 (1977).ADSCrossRefGoogle Scholar
  113. 113.
    E. M. Savitskii, Yu. V. Efimov, K. Eichler, and O. I. Evolinski, Russian Metallurgy 3, 137 (1974).Google Scholar
  114. 114.
    B. N. Kodess, Phys. stat. sol. (a) 4, 109 (1971).ADSCrossRefGoogle Scholar
  115. 115.
    H. L. Luo, E. Vielhaber and E. Corenzwit, Z. Physik 230, 443 (1970).ADSCrossRefGoogle Scholar
  116. 116.
    A. Müller, Z. Naturforschg. 24A, 1136 (1969).Google Scholar
  117. 117.
    T. Asada, T. Horiuchi, and M. Uchida, Japan J. Appl. Phys. 8, 958 (1969).ADSCrossRefGoogle Scholar
  118. 118.
    R. E. Somekh and J. E. Evetts, Sol. State Commun. 24, 733 (1977).ADSCrossRefGoogle Scholar
  119. 119.
    E. R. Stevens and O. N. Carlson, Met. Trans. 1, 1267 (1970).Google Scholar
  120. 120.
    R. Flükiger, P. Spitzli, and J. Muller (to be published).Google Scholar
  121. 121.
    L. V. Marchukova, N. M. Matveyeva, and I. I. Kornilov, Izv. Akad. Nauk SSSR, Met. Nob. 2, 207 (1973).Google Scholar
  122. 122.
    E. M. Savitskii, Yu. V. Efimov, and T. M. Frolova, Sov. Phys. Dokl. 22, 523 (1977).ADSGoogle Scholar
  123. 123.
    F. Y. Fradin and J. D. Williamson, Phys. Rev. 10B, 2803 (1974).ADSGoogle Scholar
  124. 124.
    E. M. Savitskii, V. V. Baron, and Yu. V. Efimov, Izv. Akad. Nauk, USSR, Neorgan. Mater. 2, 1444 (1966).Google Scholar
  125. 125.
    J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).ADSCrossRefGoogle Scholar
  126. 126.
    L. R. Testardi, J. H. Wernick, and W. A. Royer, Sol. State Commun. 15, 1 (1974).ADSCrossRefGoogle Scholar
  127. 127.
    B. Krevet, W. Schauer, F. Wüchner, and K. Schulze, Appl. Phys. Lett. 36, 704 (1980).ADSCrossRefGoogle Scholar
  128. 128.
    G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund Sol. State Commun. 9, 1769 (1971).ADSCrossRefGoogle Scholar
  129. 129.
    J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals 62, 25 (1978).CrossRefGoogle Scholar
  130. 130.
    A. Müller, Z. Naturforschg. 25A, 1659 (1970).ADSGoogle Scholar
  131. 131.
    131.The homogeneity range of Nb3Ge below 1500°C has been corrected by 1 at.% towards lower Ge content with respect to our original work (Ref. 129). This shift is due to imperfect microprobe calibration for the group of samples below 1500°c, which was analyzed separately in Ref. 129. The new low temperature phase limits agree with those given by A. Müller [l30] and by K. Politis (private communication).Google Scholar
  132. 132.
    B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hull, Phys. Rev. A.139, 1501 (1965).ADSCrossRefGoogle Scholar
  133. 133.
    J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals 55, 249 (1977).CrossRefGoogle Scholar
  134. 134.
    J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals (to be published).Google Scholar
  135. 135.
    C. E. Lundin and A. S. Yamamoto, Trans. AIME 236, 863 (1966).Google Scholar
  136. 136.
    R. H. Willens, T. H. Geballe, A. C. Gossard, J. P. Maita, A. Menth, G. W. Hull Jr. and R. R. Soden, Solid State Commun. 7,857 (1969).CrossRefGoogle Scholar
  137. 137.
    J. P. Charlesworth, I. Macphail, and P. E. Madsen, J. Materials Sci. 5, 580 (1970).ADSCrossRefGoogle Scholar
  138. 138.
    L. J. Vieland, R. W. Cohen and W. Rehwald, Phys. Rev. Lett. 26, 373 (1971).ADSCrossRefGoogle Scholar
  139. 139.
    L. F. Myzenkowa, V. V. Baron, and Ye. M. Savitskii, Russian Metallurgy 2, 89 (1966).Google Scholar
  140. 140.
    A. Junod, F. Heiniger, J. Muller, and P. Spitzli, Helv. Phys. Acta 43, 59 (1970).Google Scholar
  141. 141.
    It is not clear whether the sharp rise of TC at the Nb3Pt side is due to shielding effects only.Google Scholar
  142. 142.
    E. Tanaka, T. Fukuda, S. Kuma, T. Yamoshita, and Y. Onodera, Appl. Phys. Lett. 14, 389 (1969).ADSCrossRefGoogle Scholar
  143. 143.
    A. Müller, Z. Naturforschg. 26b, 1035 (1971).ADSGoogle Scholar
  144. 144.
    G. V. Raynor, J. Less-Common Metals 29, 333 (1972).CrossRefGoogle Scholar
  145. 145.
    S.A. Nemnonov and V. A. Trofimova, Phys. stat. sol. (b), 55 111 (1973).ADSCrossRefGoogle Scholar
  146. 146.
    G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Phys. Rev. B21, 5055 (1980).ADSGoogle Scholar
  147. 147.
    R. M. Waterstrat, F. Haenssler, and J. Muller, J. Appl. Phys. 50, 4763 (1979).ADSCrossRefGoogle Scholar
  148. 148.
    B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hull Jr., Phys. Rev. A139, 1501 (1965).ADSCrossRefGoogle Scholar
  149. 149.
    R. D. Feldman, R. H. Hammond and T. H. Geballe, Appl. Phys. Lett. 35, 818 (1979).ADSCrossRefGoogle Scholar
  150. 150.
    R. Chevrel, M. Sergent, and J. Prigeant, J. Sol, State Chem. 3, 515 (1971).ADSCrossRefGoogle Scholar
  151. 151.
    B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, Science 175, 1465 (1972).ADSCrossRefGoogle Scholar
  152. 152.
    M. Sergeant, Q. Fischer, M. Decroux, C. Perrin, and R. Chevrel, J. Sol. State Chem. 22, 87 (1977).ADSCrossRefGoogle Scholar
  153. 153.
    R. Flükiger, H. Devantay, J. L. Jorda, and J. Muller, IEEE Trans. Magnetics MAG-13, 818 (1977).ADSCrossRefGoogle Scholar
  154. 154.
    G. H. Moh, “Topics in Current Chemistry”, Ed. Springer-Verlag, Berlin-Heidelberg, 1978, Vol, 76, p. 108.CrossRefGoogle Scholar
  155. 155.
    R. deJonge, T. A. Popma, G.A. Wiegers and F. Jellinek, J. Solid State Chem, 2, 188 (1970).ADSCrossRefGoogle Scholar
  156. 156.
    R. Chevrel, M. Sergeant, and J. Prigent, Mat, Res. Bull. 9, 1487 (1974).CrossRefGoogle Scholar
  157. 157.
    M. Tovar, L. E. Delong, D. C. Johnston, and M. B. Maple, Solid State Commun. 30, 551 (1979).ADSCrossRefGoogle Scholar
  158. 158.
    J. Hauck, Mat. Res. Bull, 12, 1015 (1977).CrossRefGoogle Scholar
  159. 159.
    Ø. Fischer, Appl. Phys. 16, 1 (1978).ADSCrossRefGoogle Scholar
  160. 160.
    E. L. Haase and O. Mayer, Applied Superconductivity Conference, Santa Fe, N.M., Sept. 29—Oct. 2, 1980.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Flükiger
    • 1
  1. 1.Kernforschungzentrum, KarlsruheInstitut für Technische PhysikKarlsruheFederal Republic of Germany

Personalised recommendations