Mechanical Properties and Strain Effects in Superconductors

  • J. W. Ekin
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)

Abstract

Superconductors within large-scale magnets can be subjected to high mechanical loads. These arise from three principal sources:
  1. 1.

    During fabrication, the conductor is subjected to both winding tension and bending strain. The latter can be particularly severe in dipole and quadrupole magnets, but also plays a role in small-bore high- field solenoids.

     

Keywords

Fatigue Mold Helium Epoxy Brittle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Koch and D.S. Easton, Cryogenics 17, 7 (1977).CrossRefGoogle Scholar
  2. 2.
    D.S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, J. Appl. Phys. 51, 2748 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    R. P. Reed, R. P. Mikesell, A. F. Clark, Adv. inCryog. Eng. 22, 463 (1977).Google Scholar
  4. 4.
    D. A. Wigley, Mechanical Properties of Materials at Low Temperatures, Plenum (1971).Google Scholar
  5. 5.
    D. S. Easton and D. M. Kroeger, IEEE Trans. Mag. MAG-15, 178 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    G. Rupp, Filamentary A15 Superconductors, Plenum Press (1980), Eds. M. Suenaga and A. F. Clark, p. 155.CrossRefGoogle Scholar
  7. 7.
    G. Rupp, Cryogenics 18, 663 (1978).CrossRefGoogle Scholar
  8. 8.
    T. Luhman, J. Appl. Phys. 50, 3766 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    J. W. Ekin, IEEE Trans. Mag. MAG-15, 197 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    C. C. Tsuei, Science 180 57 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    See, for example, R. Roberge, Chapter 6 of this volume and the references cited therein.Google Scholar
  12. 12.
    J. Bevk, J. P. Harbison, and J. L. Bell, J. Appl. Phys. 49, 6031 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    J. D. Verhoeven, D. K. Finnemore, E. D. Gibson, J. E. Ostenson, and L. F. Goodrich, Appl. Phys. Lett. 49, 101 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    S. Foner, R. Roberge, E.J.McNiff Jr., and B. B. Schwartz, Appl. Phys. Lett. 34, 241 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    E. Buehler and H. J. Levinstein, J. Appl. Phys. 36, 3856 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    C. B. Muller and E. Saur, Adv. Cryog. Eng. 8, 574 (1963).Google Scholar
  17. 17.
    W. A. Pupp, W. W. Sattler, E.J. Saur, J. Low Temp. Phys. 14, 1 (1974).ADSCrossRefGoogle Scholar
  18. 18.
    J. P. McEvoy, Physica 55, 540 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    M. Pulver, Z. Physik 257, 261 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Ekin, F. R. Pickett, and A. F. Clark, Proc. Int. Cryog. Mat. Conf. (Aug. 1975), Adv. Cryog. Eng. 22, 449 (1977).Google Scholar
  21. 21.
    J. W. Ekin, IEEE Trans. Mag.MAG-13, 127 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    J. W. Ekin, Appl. Phys. Lett. 29, 216 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    D. S. Easton, R. E. Schwall, Appl. Phys. Lett. 29, 319 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    J. L. McDougall, Proc. ICEC 6, IPC Science and Technology Press, 396 (1976).Google Scholar
  25. 25.
    H. Hillman, H. Kuckuck, H. Pfister, G. Rupp, E. Springer, M. Wilhelm, K. Wohlleben, and G. Ziegler, IEEE Trans. Mag. MAG-13, 792 (1977).ADSCrossRefGoogle Scholar
  26. 26.
    G. Rupp, IEEE Trans. Mag. MAG-13, 1565 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    T. Luhman and M. Suenaga, Ibid., 800.Google Scholar
  28. 28.
    D. C. Larbalestier, J. W. McGraw, andM. N. Wilson, Ibid., 462.Google Scholar
  29. 29.
    G. Rupp, J. Appl. Phys. 48, 3858 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    J. W. Ekin, Proc. Int. Cryog. Mat. Conf. (Aug. 1977), Adv. Cryog. Eng. 24 306 (1978).Google Scholar
  31. 31.
    D. W. Deis, D. G. Hirzel, A. R. Rosdahl, D. R. Roach, H. S. Freynik, and J. P. Zbasnik, Ibid., 317.Google Scholar
  32. 32.
    T. Luhman, M. Suenaga, and C. J. Klamut, Ibid. 325.Google Scholar
  33. 33.
    G. Ziegler, J. Appl. Phys. 49(7), 4141 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    D. S. Easton and D. M. Kroeger, IEEE Trans. Mag. MAG-15, 178 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    G. Rupp, Ibid., 189.Google Scholar
  36. 36.
    R. J. Bartlett, R. D. Taylor, and J. D. Thompson, Ibid., 193.Google Scholar
  37. 37.
    J. W. Ekin, Ibid. 197.Google Scholar
  38. 38.
    R. Roberge, S. Foner, E. J. McNiff, Jr., B. B. Schwartz, and J. L. Fihey, Ibid., 687.Google Scholar
  39. 39.
    T. Luhman, M. Suenaga, D. O. Welch, and K. Kaiho, Ibid., 699.Google Scholar
  40. 40.
    D. O. Welch, Proc. Int. Cryog..Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26 (1980), to be published.Google Scholar
  41. 41.
    G. Rupp, Ibid.Google Scholar
  42. 42.
    C. A. M. Van der Klein and J. Prij, Ibid.Google Scholar
  43. 43.
    T. Luhman, K. Kaiho, and M. Suenaga, Ibid.Google Scholar
  44. 44.
    D. S. Easton, W. Specking, and P. A. Sanger, Ibid.Google Scholar
  45. 45.
    R. Hoard, R. Scanlan, D. Cornish, and J. Zbasnik, Ibid.Google Scholar
  46. 46.
    D. M. Kroeger, D. S. Easton, A. Das Gupta, C. C. Koch, and J. O. Scarbrough, J. Appl. Phys. 51, 2184 (1980).ADSCrossRefGoogle Scholar
  47. 47.
    J. W. Ekin, Cryogenics 20, 611 (1980).CrossRefGoogle Scholar
  48. 48.
    D.U. Gubser, T. L. Francavilla, D. G. Howe, and L. D. Jones, Appl. Phys. Lett. 31, 230 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    T. Okada, Proc. 6th Intl. Conf. on Mag. Tech., ALFA, Bratislava (1977).Google Scholar
  50. 50.
    G. Fujii, J. W. Ekin, R. Radebaugh, and A. F. Clark, Inst. Cryog. Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26, (1980), to be published.Google Scholar
  51. 51.
    J. W. Ekin, and A. I. Braginski, IEEE Trans. Mag. MAG-15, 509 (1980).ADSGoogle Scholar
  52. 52.
    A. F. Clark and J. W. Ekin, IEEE Trans. Mag. MAG-13, 38 (1977).ADSCrossRefGoogle Scholar
  53. 53.
    J. W. Ekin, M. B. Kasen, D. T. Read, R. E. Schramm, R. L. Tobler, and A. F. Clark, NBS Internal Report 80–1633 (1980).Google Scholar
  54. 54.
    K. Tachikawa, Proc. ICEC 3, Berlin, 339 (1970).Google Scholar
  55. 55.
    M. Suenaga and W. B. Sampson, Appl. Phys. Lett. 18, 584 (1971).ADSCrossRefGoogle Scholar
  56. 56.
    D. G. Howe, T. L. Francavilla, and D. U. Gubser, IEEE Trans. Mag. MAG-13, 815 (1977).ADSCrossRefGoogle Scholar
  57. 57.
    Y. Tanaka, Y. Furuto, M. Ikeda, I. Inoue, T. Suzuki, and S. Meguro, Cryogenics 17, 233 (1977).CrossRefGoogle Scholar
  58. 58.
    A. I. Braginski, M. R. Daniel, G. W. Roland, and J. A. Woollam, IEEE Trans. Mag. MAG-14 (1978).Google Scholar
  59. 59.
    J. D. Thompson, M. P. Maley, L. R. Newkirk, Solid State Comm. 28, 729 (1978).ADSCrossRefGoogle Scholar
  60. 60.
    J. Wo Ekin, IEEE Trans. Mag. MAG-17 (1981), to be published.Google Scholar
  61. 61.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).ADSCrossRefGoogle Scholar
  62. 62.
    J. Bardeen, L. N. Cooper, and J. R. Schreiffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    See, for example, A. L. Fetter, P. C. Hohenberg, in Superconductivity, edited by R. D. Parks.Google Scholar
  64. 64.
    M. G. Benz, J. Appl. Phys. 39, 2533 (1968).ADSCrossRefGoogle Scholar
  65. 65.
    J. W. Ekin, Filamentary A15 Superconductors, (1980), p. 187, Eds. M. Suenaga and A. F. Clark, Plenum Press.CrossRefGoogle Scholar
  66. 66.
    T. Luhman and D.O. Welch, 8th Symp. on Eng. Prob, in Fusion Research, 1979, IEEE Pub. No. 79CH 1441–5 NPS, p. 241.Google Scholar
  67. 67.
    K. Kaiho, T. S. Luhman, M. Suenaga, and W. B. Sampson, Appl. Phys. Lett. 36, 223 (1980).ADSCrossRefGoogle Scholar
  68. 68.
    J. W. Ekin, J. Appl. Phys. 49, 3406 (1978).ADSCrossRefGoogle Scholar
  69. 69.
    J. W. Ekin, A. F. Clark, and J. C. Ho, J. Appl. Phys. 49, 3410 (1978).ADSCrossRefGoogle Scholar
  70. 70.
    T. Luhman, D. O. Welch, andM. Suenaga, IEEE Trans. Mag. MAG-17 (1981), to be published.Google Scholar
  71. 71.
    R. Scalan, private communication.Google Scholar
  72. 72.
    P. A. Sanger, E. loriatti, C. Spencer, andC. Heyne, 8th Symp. on Eng. Prob, in Fusion Research, 1979, to be published.Google Scholar
  73. 73.
    S. Foner, R. Roberge, E.J. McNiff Jr., B. B. Schwartz, and J. Lo Fihey, Appl. Phys. Lett. 34, 241 (1979).ADSCrossRefGoogle Scholar
  74. 74.
    S. F. Cogan and R. M. Rose, Appl. Phys. Lett. 35, 884 (1979).ADSCrossRefGoogle Scholar
  75. 75.
    D. N. Cornish, Proc. 2nd Intl Conf. on Magnet Technology, 507 (1967).Google Scholar
  76. 76.
    P. F. Smith and B. Colyer, Cryogenics 15, 2011 (1975).CrossRefGoogle Scholar
  77. 77.
    J. W. Ekin, R. E. Schramm, and A. F. Clark, Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York, 301 (1979).CrossRefGoogle Scholar
  78. 78.
    J. W. Ekin, R. E. Schramm, and M. J. Superczynski, Proc. Int’l. Cryog. Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26, 677 (1980).CrossRefGoogle Scholar
  79. 79.
    A. J. Middleton, P. D. Hey, and B. Colyer, Rutherford Laboratory Report RHEL/R265, 1972.Google Scholar
  80. 80.
    M. A. Green, D. E. Coyle, P. B. Miller, and W. F. Wenzel, Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York, 409 (1979).CrossRefGoogle Scholar
  81. 81.
    R. S. Kensley and Y. Iwasa, Cryogenics 20, 25 (1980).CrossRefGoogle Scholar
  82. 82.
    V. Arp, J. Appl. Phys. 48, 2026 (1977).ADSCrossRefGoogle Scholar
  83. 83.
    W. Hassenzahl, Cryogenics, to be published.Google Scholar
  84. 84.
    H. Sekine, K. Tachikawa, and Y. Iwasa, Appl. Phys. Lett. 35, 472 (1979).ADSCrossRefGoogle Scholar
  85. 85.
    J. W. Ekin and H. Sekine, Appl. Phys. Lett., to be published.Google Scholar
  86. 86.
    M. N. Wüson and Y. Iwasa, Cryogenics 18, 17 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. W. Ekin
    • 1
  1. 1.National Bureau of StandardsBoulderUSA

Personalised recommendations