Niobium-Titanium Superconducting Materials

  • David C. Larbalestier
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


Niobium-titanium superconducting composites have quite a long history in the era of applied superconductivity, having been introduced about fifteen years ago. Virtually all the superconducting magnets constructed have used Nb-Ti superconductor, the principal exception being small high-field solenoids of fields greater than about 9 tesla which are made of Nb3Sn tape. At present, filamentary (FM)Nb3Sn appears ready to become widely used, provided that the engineering marketplace can accommodate to its brittle nature in the way that has been possible in the research laboratory. However, at present the number of applications of Nb3Sn is small.


Critical Current Density Critical Field Final Heat Treatment High Critical Current Density Electronic Specific Heat Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.D. McInturff, Chapter 3 in The Metallurgy of Superconducting Materials, Editors T. Luhman and D. Dew-Hughes, Plenum Press, New York, 1980.Google Scholar
  2. 2.
    D. C. Larbalestier, Adv. in Cryo. Eng. 26, 10 (1980, Plenum Press, New York.CrossRefGoogle Scholar
  3. 3.
    E. W. Collings, Battelle Columbus Laboratories, private communication.Google Scholar
  4. 4.
    See Chapter 7 by J. Ekin, in this book.Google Scholar
  5. 5.
    See Chapter 5 by H. Hillmann, in this book.Google Scholar
  6. 6.
    Constitution of Binary Alloys, Editors M. Hansen and K. Anderko, McGraw-Hill, New York, 1958, p. 1023.Google Scholar
  7. 7.
    M. Hansen, E. L. Kamen, H. D. Kessler, D.J. McPherson, J. of Metals 3, 881 (1951).Google Scholar
  8. 8.
    G.N. Ronami, S. M. Kuznetsova, S. G. Fedotov, K. M. Konstantinov, Moscow University Physics Bulletin 2, 55 (1970).Google Scholar
  9. 9.
    K.J. Jepson, A. R. G. Brown, J. A. Gray, The Science, Technology and Application of Titanium Editors R.I. Jaffee and N. Promisel, Pergamon Press, London, 1970, p. 677.Google Scholar
  10. 10.
    L. Kaufman, B. Bernstein, Computer Calculation of Phase Diagrams Academic Press, New York, 1970.Google Scholar
  11. 11.
    A. G. Imgram, D.N. Williams, R. A. Wood, H. R. Ogden, R. I. Jaffee, WADC Technical Report 59–595, Part II, 1961.Google Scholar
  12. 12.
    J. K. Hülm, R. D. Blaugher, Phys. Rev. 123, 1569 (1961).ADSCrossRefGoogle Scholar
  13. 13.
    C. S. Barrett, T. B. Massalski, The Structure of Metals, 3rd Ed., McGraw-Hill, New York, 1966, p. 626.Google Scholar
  14. 14.
    W. B. Pearson, Handbook of Lattice Spacings Vol. 2, p. 1123, Pergamon Press, London, 1968.Google Scholar
  15. 15.
    B. A. Hatt and V. G. Rivlin, J. Phys. D l, 1145 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    A.R.G. Brown, D. Clark, J. Easterbrook, K. S. Jepson, Nature 201, 914 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    Y. C. Huang, S. Suzuki, H. Kaneko, T. Sato, Ibid., Ref. 9, p. 691.Google Scholar
  18. 18.
    Iv. Bagaryatskii, G. I. Nosova, T. V. Tagunova, Soviet Phys. Doklady 3, 1014 (1958).ADSGoogle Scholar
  19. 19.
    C. C. Koch, D. Easton, Cryogenics 17, 391 (1977).CrossRefGoogle Scholar
  20. 20.
    C. Baker and J. Sutton, Phil. Mag. 19 1223 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    B. S. Hickman, J. Mater. Sci. 4, 554 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    S. L. Sass, J. Less Com. Metals 28 157 (1972).CrossRefGoogle Scholar
  23. 23.
    D. Kramer, C. G. Rhodes, Trans. AIME 236 1612 (1967).Google Scholar
  24. 24.
    W. G. Brammer, G.G. Rhodes, Phil. Mag. 16, 477 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    D. L. Moffat, University of Wisconsin, private communication.Google Scholar
  26. 26.
    I. Pfeiffer, H. Hillmann, Acta Met. 16 1429 (1968).CrossRefGoogle Scholar
  27. 27.
    J. B. Vetrano, R. W. Boom, J. Appl. Phys. 36 1179 (1965).ADSCrossRefGoogle Scholar
  28. 28.
    D. F. Neal, A. G. Barber, A. Woolcock, J. A. F. Gidley, Acta Met. 19 143 (1971).CrossRefGoogle Scholar
  29. 29.
    J. Willbrand, W. Schlump, Z. Metallkundetó, 66 714 (1975).Google Scholar
  30. 30.
    A. W. West, D. G. Larbalestier, Adv. inGryo. Eng. 26 (1980).Google Scholar
  31. 31.
    A. W. West, D. G. Larbalestier, in preparation. To appear in IEEE MAG-17 (1981).Google Scholar
  32. 32.
    K. Osamura, E. Matsubara, T. Miyatani, Y. Murakami, to appear in Phil. Mag. (1980).Google Scholar
  33. 33.
    H. Hillmann, D. Hauck, Proc. of the 1972 Appl. Superconductivity Gonf., IEEE Publication 72GH-0682–5-TABSG, p. 429 (1972).Google Scholar
  34. 34.
    G.G. Koch, D. S. Easton, Cryogenics 17, 391 (1977).CrossRefGoogle Scholar
  35. 35.
    G.N. Reid, J. L. Routbort, and R. A. Maynard, J. Appl. Physics 44, 1398 (1973).ADSCrossRefGoogle Scholar
  36. 36.
    C. Baker, Metal Science J. 5, 92 (1971).CrossRefGoogle Scholar
  37. 37.
    D.S. Easton and G. G. Koch, p. 431 in Shape Memory Effects in Alloys Editor J. Perkins, Plenum Press, New York (1975).Google Scholar
  38. 38.
    G. Pasztor, G. Schmidt, J. Appl. Phys. 49 886 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    D. T. Read, Cryogenics 18 579 (1978).CrossRefGoogle Scholar
  40. 40.
    D. Evans, Rutherford Laboratory Report, RL-73–092, 1973 Chilton Didcot, Oxon., United Kingdom.Google Scholar
  41. 41.
    D. Pattanayak, Kernforschungszentrum, Karlsruhe, private communication.Google Scholar
  42. 42.
    H. Hillmann, Vacuumschmelze. Research Report T73–03 (1973).Google Scholar
  43. 43.
    G. Schmidt, Appl. Phys. Lett. 28 463(1976).Google Scholar
  44. 44.
    A. Kelly, G. Davies, Metallurgical Rev. 10, 1 (1965).Google Scholar
  45. 45.
    J. R. Heim, Fermilab Technical Report TM-334B (1974).Google Scholar
  46. 46.
    J. Ekin, see Chapter 7 in this book.Google Scholar
  47. 47.
    B. T. Matthias and J. K. Hülm, see Chapter 1 in this book.Google Scholar
  48. 48.
    T. Doi, F. Ishida, U. Kawabe, M. Kitada, Trans, of Met. Soc. of AIME 242 1793 (1968).Google Scholar
  49. 49.
    T. Horiuchi, K. Matsumoto and Y. Monju, Proc. of 8thSymposium on Eng. Problems of Fusion Research, IEEE Publication 79GH1441- 5NPS, p. 274 (1979).Google Scholar
  50. 50.
    D. G. Hawksworth, D. C. Larbalestier, Ref. 49, p. 249.Google Scholar
  51. 51.
    H. R. Segal, T. M. Hrycaj, Z.J.J. Stekly, T. A. deWinter, and K. Hemachalam, Ref. 49, p. 255.Google Scholar
  52. 52.
    M. Suenaga and R. M. Ralls, J. Appl. Phys. 40 4457 (1969).ADSCrossRefGoogle Scholar
  53. 53.
    D. G. Hawksworth and D. C. Larbalestier—Adv. in Cryo. Eng. 26, 479 (1980).CrossRefGoogle Scholar
  54. 54.
    Gonstitution of Binary Alloys—First Supplement, Editor R. P. Elliot, McGraw Hill, New York (1963).Google Scholar
  55. 55.
    N. Alekseyeviskiy, O. S. Ivanoy, I.I. Rayevskiy and M. V. Stepanov, Physics of Metals and Metallography 23 28 (1967).Google Scholar
  56. 56.
    G. Love and M. Picklesimer, Trans. Met. Soc., AIME 236 430 (1966).Google Scholar
  57. 57.
    T. Horiuchi, Y. Monju, N. Nagai, J. of Jap. Inst, of Metals 37, 882 (1973).Google Scholar
  58. 58.
    T. Horiuchi, Y. Monju, I. Tataraand, N. Nagai, Ref. 57, p. 1057.Google Scholar
  59. 59.
    E. M. Savitskii, V. V. Baron, V. V. Efimov, M. I. Bychkova and L. F. Myzenkova, Superconducting Materials Plenum Press (1973).Google Scholar
  60. 60.
    E. W. Collings and R. D. Smith, J. Less Com. Metals 48, 187 (1976).CrossRefGoogle Scholar
  61. 61.
    E. M. Savitskii, V. V. Baron, V. V. Efimov, M. I. Bychkova and L. F. Myzenkova, Superconducting Materials Plenum Press (1973), p. 230.Google Scholar
  62. 62.
    David Hawksworth, University of Wisconsin, to be published.Google Scholar
  63. 63.
    J. Zbasnik, Lawrence Livermore Laboratory, California, private communication.Google Scholar
  64. 64.
    L. Dubeck and K. S. L. Setty, Phys. Lett, 27A, 334 (1968).ADSGoogle Scholar
  65. 65.
    Y. W. Chang, Ph.D. Thesis, University of California, Los Angeles, 1971.Google Scholar
  66. 66.
    R. J. Hale, quoted in H. Brechna, Proceedings of the 1968 Summer- study on Superconducting Devices and Accelerators, Brookhaven National Laboratory, BNL-50155 (C-55), part II, p. 478 (1969).Google Scholar
  67. 67.
    C. Schmidt, J. Appl. Phys. 46 1372 (1975).ADSCrossRefGoogle Scholar
  68. 68.
    M. Ikebe, S. Nakagawa, K. Hiraga and Y. Muto, Solid State Commun. 23, 189 (1977).ADSCrossRefGoogle Scholar
  69. 69.
    N. Morton, B. W. James, G. H. Wostenholm and S. Nuttall, J. Phys. F5, 2098 (1975).ADSCrossRefGoogle Scholar
  70. 70.
    J. Bischof and A. Ryska, Journal de Physique, Colloque C6, supplement n°8, 39 C6–675 (1978).Google Scholar
  71. 71.
    C. Schmidt, Rev. Sci. Instruments 50 457 (1979).ADSGoogle Scholar
  72. 72.
    T. G. Berlincourt, R. R. Hake, Phys. Rev. 131 1 (1963).CrossRefGoogle Scholar
  73. 73.
    A. F. Clark, R. P. Reed, and E. C. Van Reuth, Materials Research in Support of Superconducting Machinery, IV, National Bureau of Standards, Boulder, Colorado, October 1975.Google Scholar
  74. 74.
    P. H. Bellin, H. C. Gatos, and V. Sadogapan, J. Appl. Phys. 40 3984 (1969).ADSCrossRefGoogle Scholar
  75. 75.
    H. Hillmann and K. J. Best, IEEE Trans. Mag. 13, 1568 (1977).ADSCrossRefGoogle Scholar
  76. 76.
    A. F. Clark and R. L. Powell, Cryogenics 18 137 (1978).CrossRefGoogle Scholar
  77. 77.
    C. F. Hempstead and Y. B. Kim, Phys. Rev. Letters 12 145 (1964).ADSCrossRefGoogle Scholar
  78. 78.
    K. M. Ralls, Phys. Lett. 23, 29 (1966).ADSCrossRefGoogle Scholar
  79. 79.
    D. C. Hill and R. M. Rose, Met. Trans. 2, 585 (1971).CrossRefGoogle Scholar
  80. 80.
    See, for example, B. B. Goodman, Rep. on Progress in Physics 49, 445 (1966).ADSCrossRefGoogle Scholar
  81. 81.
    A. M. Clogston, Phys. Rev. Lett. 9 266 (1962).ADSCrossRefGoogle Scholar
  82. 82.
    B. S. Chandrasekhar, Appl. Phys. Lett. 1 7 (1962).ADSCrossRefGoogle Scholar
  83. 83.
    R. Chevrel, see Chapter 10 in this book.Google Scholar
  84. 84.
    K. Maki, Phys. Rev. 148, 362 (1966).ADSCrossRefGoogle Scholar
  85. 85.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147 295 (1966).ADSCrossRefGoogle Scholar
  86. 86.
    R. R. Hake, Phys. Rev. 158, 356 (1967).ADSCrossRefGoogle Scholar
  87. 87.
    L. J. Neuringer and Y. Shapira, Phys. Rev. Lett. 172 81 (1966).ADSCrossRefGoogle Scholar
  88. 88.
    T. Orlando, E.J. McNiff, S. Foner and M. Beasley, Phys. Rev. B19 4545 (1979).ADSGoogle Scholar
  89. 89.
    R. R. Hake, Appl. Phys. Lett. 10, 6 (1967).ADSCrossRefGoogle Scholar
  90. 90.
    M. G. Mendiratta, G. Lutjering and S. Weissman, Met. Trans. 2, 2599 (1971).CrossRefGoogle Scholar
  91. 91.
    R. G. Hampshire, M. T. Taylor, J. Phys. F 2, 89 (1972).ADSCrossRefGoogle Scholar
  92. 92.
    N. E. Alekseevskii, O. S. Ivanov, I. I. Raevskii, and N. V. Stepanov, Sov. Physics Doklady 12, 898 (1968).ADSGoogle Scholar
  93. 93.
    B. G. Lazarev, O.N. Ovcharenko, A. A. Matsakova, and V. G. Voltoskaya in Physics and Metallurgy of Superconductors, editors E. M. Savitskii and V. V. Baron, p. 89, Consultants Bureau, New York, 1970.Google Scholar
  94. 94.
    K. M. Ralls andR. M. Rose—unpublished work.Google Scholar
  95. 95.
    D. G. Hawksworth and D. C. Larbalestier—to be published.Google Scholar
  96. 96.
    T. Horiuchi, Y. Monju, N. Nagai, J. Japanese Inst, of Metals 882 (1973).Google Scholar
  97. 97.
    W. Y. Chen, J. S. Alcorn, Y.-H. Hsu and J. R. Purcell—To appear in IEEE Trans. Mag. 17, 1981.Google Scholar
  98. 98.
    J. Ekin, J. Appl. Phys. 49 3406 (1978).ADSCrossRefGoogle Scholar
  99. 99.
    D. A. Colling, T. A. de Winter, W. K. McDonald and W. C. Turner, IEEE Trans. Mag. 13, 848 (1977).ADSCrossRefGoogle Scholar
  100. 100.
    P. R. Critchlow, E. Gregory and B. Zeitlin, Cryogenics 11, 3 (1971).CrossRefGoogle Scholar
  101. 101.
    R. Arndt and R. Ebeling, Z.Metallkunde 65 364 (1974).Google Scholar
  102. 102.
    J. Willbrand and R. Ebeling, Metall. 29 677 (1975).ADSGoogle Scholar
  103. 103.
    A. D. Mclnturff, G. Chase, J. Appl. Phys. 44, 2378 (1973).ADSCrossRefGoogle Scholar
  104. 104.
    H. R. Segal, K. Hemachalam, T. A. deWiater and J. J. Stekly, IEEE Trans. Mag. 18 807 (1979).ADSCrossRefGoogle Scholar
  105. 105.
    T. Doi, F. Ishida, U. Kawabe, M. Kitada, Trans. AIME 242 1793 (1968).Google Scholar
  106. 106.
    D. C. Larbalestier, Proc. of the 6th International Conference on Magnet Technology (MT-6), p. 1076, ALFA Publishing Co., Bratislava, Czechoslovakia (1978).Google Scholar
  107. 107.
    S. O. Hong, D. C. Larbalestier, IEEE Trans. Mag. 15, 784 (1979).ADSCrossRefGoogle Scholar
  108. 108.
    E.J. Kramer, J. Appl. Phys. 44, 1360 (1973).ADSCrossRefGoogle Scholar
  109. 109.
    D. Dew-Hughes, Phil. Mag. 30 293 (1974).ADSCrossRefGoogle Scholar
  110. 110.
    T. Matsushita, K. Yamafuji, Japan J. of Appl. Phys.—to appear.Google Scholar
  111. 111.
    E.J. Kramer, J. Electronic. Matls. 4, 839 (1975).ADSCrossRefGoogle Scholar
  112. 112.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).ADSCrossRefGoogle Scholar
  113. 113.
    R. Marshand W. McDonald, Teledyne Wah Chang, Albany, Oregon, and L. Belz, Kawecki Berylco, Allentown, PA, private communication.Google Scholar
  114. 114.
    T. E. Cordier and W. K. McDonald, IEEE Trans. Mag 11, 280 (1975).ADSCrossRefGoogle Scholar
  115. 115.
    C. W. Curtis and W. K. McDonald, IEEE Trans. Mag. 13, 769 (1977).Google Scholar
  116. 116.
    W. K. McDonald, Teledyne Wah Chang, Albany, Oregon, private communication.Google Scholar
  117. 117.
    R. Remsbottom, University of Wisconsin, Madison, private communication.Google Scholar
  118. 118.
    K. T. Hartwig—to appear in Adv. in Cryo. Eng. 26 (1980).Google Scholar
  119. 119.
    M. Young, E. Gregory, E. Adam and W. Marancik, Adv. in Cryo. Eng. 24 383 (1978).Google Scholar
  120. 120.
    D. C. Larbalestier, V. W. Edwards, J. A. Lee, C. A. Scott, and M. N. Wilson, IEEE Trans. Mag. 11, 555 (1975).ADSCrossRefGoogle Scholar
  121. 121.
    S. Van Sciver—to appear in Proc. of ICEC -9 (1980).Google Scholar
  122. 122.
    S.O. Hong, D. C. Larbalestier, L. P. Mai, I. N. Sviatoslavsky, and I. Ojalvo, Ref. 49, p. 1683.Google Scholar
  123. 123.
    R. Aymar, C. Claudet, C. Deck, R. Duthil, P. Genevey, C. Leloup, J. C. Lotlin, J. Parain, P. Seyfert, A. Torossian, and B. Turck, IEEE Trans. Mag. 15 542 (1979).ADSCrossRefGoogle Scholar
  124. 124.
    K.J. Best, D. Genevey, H. Hillmann, L. Krempasky, M. Polak, and B. Turck, IEEE Trans. Mag. 15, 765 (1979).ADSCrossRefGoogle Scholar
  125. 125.
    K.J. Best, D. Genevey, H. Hillmann, L. Krempasky, M. Polak, and B. Turck, IEEE Trans. Mag. 15, 395 (1979).ADSCrossRefGoogle Scholar
  126. 126.
    R. Hasegawa and L. E. Tanner, J. Appl. Phys. 49 1196 (1978).ADSCrossRefGoogle Scholar
  127. 127.
    W. L. Johnson, J. Appl. Phys. 50, 1557 (1979).ADSCrossRefGoogle Scholar
  128. 128.
    C. C. Tsuei, Chapter 12 in thisTï’ook.Google Scholar
  129. 129.
    M. Tenhover, Cal. Inst, of Technology, Pasadena, CA — private communication.Google Scholar
  130. 130.
    R. Roberge, Chapter 6 in this book.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • David C. Larbalestier
    • 1
  1. 1.Department of Metallurgical Engineering and Materials Science CenterUniversity of WisconsinMadisonUSA

Personalised recommendations