Large-Scale Applications of Superconductivity in the United States: An Overview

  • R. A. Hein
  • D. U. Gubser
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


The successful use of superconducting windings in large bubble chamber detectors marked the birth of large-scale applications of superconductivity, The euphoric feeling that was prevalent in the early 1970’s that superconductivity was the panacea for our technological problems — whether they be on land, on sea, or in the air — has now given way to a feeling of cautious optimism. Whereas the decade of the 1970’s has seen the demise of some projects and the significant curtailment of others, it also saw the successful demonstrations of prototypes which have given rise to new and bigger systems.


Brookhaven National Laboratory Scale Application Electric Power Research Institute Power Transmission Line Superconducting Magnet Energy Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Workshop Proceedings: Public Policy Aspects of High Capacity Electric Power Transmission, Electric Power Institute Publication No. EPRI WS-79–164, September 1979, Palo Alto, CA.Google Scholar
  2. 2.
    R. Garwin, “The Role and Technology of High-Power Transmission Lines”, opening address of the second day, ibid. Also see W. E. Keller, “DC Superconducting Cables”, paper D-2, ibid.Google Scholar
  3. 3.
    “Underground Power Transmission by Superconducting Cables”, Brookhaven National Laboratory Report No. BNL 50325, March 1972, edited by E. B. Forsyth.Google Scholar
  4. 4.
    G. Bogner, “Large-Scale Applications of Superconductivity”, Superconducting Applications: SQUIDS and Machines, edited by S. Foner and B. B. Schwartz, Plenum Press, NY, 1974, Chap. 20.Google Scholar
  5. 5.
    R. A. Hein, “Superconductivity Large-Scale Applications”, Science 185, 221 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    E. B. Forsyth, “AC Superconducting Cables”, Workshop Proceedings: Public Policy Aspects of High-Capacity Electric Power Transmission, paper Dl, op. cit.Google Scholar
  7. 7.
    W. E. Keller, “DC Superconducting Cable Configuration”, ibid paper D-2, section 3.Google Scholar
  8. 8.
    R. W. Meyerhoff, “Superconducting Transmission Lines”, Science and Technology of Superconductivity, edited by W. D. Gregory, W. N. Matthews, Jr., and E. A. Edelsack, Vol. 2, Plenum Press, NY, 1973, p. 443.Google Scholar
  9. 9.
    Lossless in the sense of no I2R losses; it does require energy to maintain the cryogenic environment. This latter consideration makes a dc line 99.95% efficient.Google Scholar
  10. 10.
    G. Bogner, “Transmission of Electrical Energy by Superconducting Cables”, Superconducting Machines and Devices: Large Systems Applications, edited by S. Foner and B. B. Schwartz, Plenum Press, NY, 1974, Chapter 7.Google Scholar
  11. 11.
    M. Rabinowitz, “Advanced Transmission Line Technologies”, paper E -2 of Reference 1.Google Scholar
  12. 12.
    J. F. Bossiere, Appl. Phys. Letters 25, 756 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    M. Suenaga and M. Garber, Science 184, 952 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    E. B. Forsjrth, “AC Superconducting Cables”, paper D-1 of Reference 1.Google Scholar
  15. 15.
    M. Tigner, “RF Superconductivity for Accelerators…. is it a Hollow Promise?”, IEEE Transactions on Magnetics, Vol. MAG- 15, #1, p. 15 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    W. H. Hartwig and C. Passoco, “RF Superconducting Devices”, Applied Superconductivity, Vol. II. Editor, V. L. Newhouse, Academic Press, NY, 1975, Chapter 8.Google Scholar
  17. 17.
    R. L. Powell, F. R. Fickett, andB. W. Birmingham, “Problems on Large-Scale Applications of Superconductivity in the United States”, Superconducting Machines and Devices: Large-Scale Applications, op. cit., Chapter 17.Google Scholar
  18. 18.
    J. A. Martin, “Recent Advances in Design for Low and Medium Energy Heavy Ion Accelerators”, IEEE Transactions on Nuclear Science, Vol. NS-26, #3, 3645 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    (a) W.D. Metz, “Two Superconducting Accelerators: Physics Spurs Technology”, Science 20, 188 (1978).ADSCrossRefGoogle Scholar
  20. 19(b).
    R. R. Wilson, “The Next Generation of Particle Accelerators”, Scientific American 42 (1980); also “The Batavia Accelerator”, Scientific American 230, 72 (1974).CrossRefGoogle Scholar
  21. 20.
    A. V. Tollestrup, “Progress Report - Fermilab Energy Doubler”, IEEE Transactions on Magnetics, Vol. MAG-15, 647 (1979).ADSCrossRefGoogle Scholar
  22. 21.
    B. D. McDaniel, “The US High Energy Accelerator Projects CESR, PEP, Doubler-Tevatron, and Isabelle”, IEEE Transactions on Nuclear Science, Vol. NS-26, 2978 (1979).ADSCrossRefGoogle Scholar
  23. 22.
    (a) H. Hahn, M. Month, and R. R. Rau, “Proton-Proton Intersecting Storage Accelerator Facility ISABELLE at the Brook- haven National Laboratory”, Rev. Mod. Phys. 49, 625 (1977).ADSCrossRefGoogle Scholar
  24. (b).
    J. R. Sanford, “Two Superconducting Storage Rings -ISABELLE”, IEEE Transactions on Magnetics, Vol. MAG-15, 642 (1979).ADSCrossRefGoogle Scholar
  25. 23.
    (a) E.G. Frankel, J. M. Reynolds, and E. H. Sibley, “Superconducting Machinery for Naval Applications”, Naval Engineers Journal, June 1966, pp. 501–514.Google Scholar
  26. 23(b).
    C. F. Janes, “The Potential of Superconductors for Shipboard Power Applications”, ibid October 1967, pp. 791–797.Google Scholar
  27. 24.
    A.D. Appleton, “Status of Superconducting Machines at IRD - Spring 1972”, Proceeds of the 1972 Applied Superconductivity Conference, IEEE Publication No. 72-CHO 682-TABSC, p. 16.Google Scholar
  28. 25.
    (a) T. S. Doyle, J. H. Harrison, and A. Chaiken, “Navy Superconducting Machinery Program”, Paper No.20 at the Spring Meeting/STAR Symposium, April 26–29, 1978, New London, Connecticut.Google Scholar
  29. (b).
    M. Superczynski, “Navy Superconducting Machinery Development Program”, Summary of the Proceedings of the Superconductivity Technical Exchange Meeting, April 16, 1980, NRL, Washington DC, p. 151.Google Scholar
  30. 26.
    R. A. Ackerman, R. L. Rhodenizer, and C. O. Ward, “A Superconducting Field Winding Subsystem for a 3000 HP Homopolar Motor”, IEEE Transactions on Magnetics, Vol. MAG-13, 772 (1977).ADSCrossRefGoogle Scholar
  31. 27.
    J. E. Edmonds, “Superconducting Generator Technology - An Overview”, IEEE Trans., Vol. MAG-15, 672 (1979).ADSGoogle Scholar
  32. 28.
    M. Rabinowitz, “Superconducting Generators for Utility Power Systems”, Trans. IEEE, Vol. 13, 1977, p. 255.ADSGoogle Scholar
  33. 29.
    C. E. Oberly, “Air Force Applications of Lightweight Superconducting Machinery”, Trans. IEEE, Vol. MAG-13, 260 (1977).ADSGoogle Scholar
  34. 30.
    J. L. Smith, Jr., G. L. Wilson, and J. L. Kirtley, Jr., “MIT- DOE Program to Demonstrate an Advanced Superconducting Generator”, ibid. p. 727.Google Scholar
  35. 31.
    P. Thullen, J. C. Dudley, D. L. Green, J. L. Smith, Jr., and H. H. Woodson, IEEE Trans., Power Apparatus and Systems 90, 611 (1971).CrossRefGoogle Scholar
  36. 32.
    C.J. Mole, W. G. Bremmer, and H. E. Halley, Proc. IEEE 61, 95 (1973).CrossRefGoogle Scholar
  37. 33.
    J. S. H. Ross in Conference Reports Section of Cryogenics 19,, 551 (1979).Google Scholar
  38. 34.
    For example, see M. Rabinowitz “Cryogenic Power Generation”, Cryogenics 17, 319 (1977).CrossRefGoogle Scholar
  39. 35.
    “Superconducting Magnetic Energy Storage (SMES) Program”, Los Alamos Scientific Laboratory Progress Report No. LA 8199- PR, January 1980.Google Scholar
  40. 36.
    J.Powell, “Large-scale Applications of Superconductivity”, Superconducting Machines and Devices: Large-Scale Applications, op. cit., p. 34.Google Scholar
  41. 37(a).
    R. Boom, “Large Superconducting Magnets”, in Summary of Proceedings of the Superconductivity Technical Exchange Meeting, pp. cit. p.7, and private communication.Google Scholar
  42. 37(b).
    l GWh Diurnal Load-Leveling Superconducting Magnetic Energy Storage System Reference Design, Los Alamos Scientific Laboratory Informal Report No. LM-7885-MS, Vol. 1 (1970); also see “Energy Storage Coil and Superconductor”, LA-7885-MS, Vol. II (1979).Google Scholar
  43. 38.
    M. N. Wilson, “Large Superconducting Magnets for New Energy Technologies”, Advances in Cryogenic Engineering, Vol. 24, p. 1 (1978).Google Scholar
  44. 39.
    S. L. Ackerman, R. N. Randall, E. J. Rapperport, and C. E. Roye, “Practical Aspects of Designing and Manufacturing MHD Superconducting Base-Load Magnets in 1988 Time Frame”, IEEE Trans, of Magnetics, Vol. MAG-15, 310 (1979).ADSCrossRefGoogle Scholar
  45. 40.
    Z. J. J. Steckly, R. J. Thome, and W. F. B. Punchard, “Superconducting Magnets for a MHD Test Facility and Base Load Power Plant”, IEEE Transactions on Magnetics, MAG-13, 636 (1977).ADSCrossRefGoogle Scholar
  46. 41.
    E. E. Kinter, Proc. of the 8th Symposium on “Engineering Problems of Fusion Research”, edited by C. K. McGregor and T. H. Batzer, IEEE Pub. No. 79-’CH1441’5 NPS, Vol. 1, p.1.Google Scholar
  47. 42.
    F. E. Coffmanet et al., ibid. Vol. 1, p. 18.Google Scholar
  48. 43.
    P. N. Haubenreich, J. N. Luten, and P. B. Thompson, “The Role of the Large Coil Programs in the Development of Superconducting Magnets for Fusion Reactors”, IEEE Trans. of Magnetics, MAG-15, 570 (1979).Google Scholar
  49. 44.
    P.J. Reardon, “High Energy Physics and Applied Superconductivity”, IEEE Trans, on Magnetics, Vol. MAG-13, 704 (1977).ADSCrossRefGoogle Scholar
  50. 45.
    (a) M. W. Browne, “Scientists See Peril in Wasting Helium”, Science Time, NY Times, August 21, 1979.Google Scholar
  51. 45(b).
    Helium Study Committee, National Research Council, “Heliumc A Public Policy Problem”, National Academy of Sciences, Washington DC, 1978.Google Scholar
  52. 46.
    “The Energy Related Applications of Helium”, A Report to the President and Congress of the United States, April 11, 1975, ERDA-13.Google Scholar
  53. 47.
    E. Cook, “The Helium Question”, Science, Vol. 206, 1141 (1978); see also, “Congress Considers New Helium Conservation Plan”, Physics Today, p. 91, November 1979.ADSCrossRefGoogle Scholar
  54. 48.
    H. Kolm, K. Fine, P. Mongeau, and F. Williams, “Electromagnetic Propulsion Alternatives”, AIAA Proc. 14th Inters ociety Energy Conversion Engineering Conference, Vol. 2, 2004 (1979).Google Scholar
  55. 49.
    Y. M. Eyssa and R. W. Boom, IEEE Transactions on Magnetics MAG-11, 1585 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. A. Hein
    • 1
  • D. U. Gubser
    • 2
  1. 1.National Science FoundationUSA
  2. 2.Naval Research LaboratoryUSA

Personalised recommendations