Practical Superconducting Materials

  • M. N. Wilson
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


Up to the present time by far the most important application of superconducting materials has been in the construction of magnets. The principal advantage to be obtained from using superconductivity here is of course the elimination of ohmic loss, which can reduce energy demand and running costs by a large factor, despite the modest additional requirements for refrigeration power. An important further benefit is the reduction in magnet size and weight which may be achieved as a consequence of the high current densities in superconducting material and the elimination of ion yokes (which are usually needed in conventional magnet systems to keep the power requirements within manageable bounds). The capital cost of a superconducting system may often be lower than its conventional equivalent, partly by virtue of the reduction in size and partly because there is no longer any need for high powered current supplies or water cooling systems.


Heat Transfer Coefficient Liquid Helium Critical Current Density Normal Zone Composite Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Wipf, Los Alamos Scientific Laboratory Report LA 72–75, 1978.Google Scholar
  2. 2.
    G. Paztor and C. Schmidt, J. Appl. Phys. 49 886 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    M.N. Wilson, SUPERCONDUCTING MAGNETS (to be published by Oxford University Press).Google Scholar
  4. 4.
    C. A. Scott (to be published).Google Scholar
  5. 5.
    P. F. Smith, M. N. Wilson, and A. H. Spurway, J. Phys. D 3, 1561 (1970).Google Scholar
  6. 6.
    T. Ogasawara, K. Yasukochi, and T. Akachi, Proc. 12th Internat. Conf. on Low Temperature Physics, Kyoto, Japan (1970).Google Scholar
  7. 7.
    J. L. Duchateau and B. Turck, Appl. Phys. 46 4989 (1975).Google Scholar
  8. 8.
    Z.J.J. Stekly and J. L. Zar, IEEE Trans.,12, 367 (1965).ADSGoogle Scholar
  9. 9.
    A. P. Butler, G. B. James, B. J. Maddock, and W. J. Norris, Internat. J. Heat and Mass Transfer 13 105(1970).CrossRefGoogle Scholar
  10. 10.
    M. Nishi, Japan Atomic Energy Research Institute Report JAERI/ SCM/LCT-80–001 (1980).Google Scholar
  11. 11.
    S. C. Sydoriak, Low Temperature Physics LT 13 4, 607, Plenum Publishing Corp. (1974).Google Scholar
  12. 12.
    C. Schmidt, Appl. Phys. Lett. 32, 829 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    B. J. Maddock, G. B. James, and W. T. Norris, Cryogenics 9, 261 (1969).CrossRefGoogle Scholar
  14. 14.
    R. D. McCarty, National Bureau of Standards (USA) Technical Note 631 (1972).Google Scholar
  15. 15.
    P.J. Giarratano, V. D. Arp, and R. V. Smith, Cryogenics 11 385 (1971).CrossRefGoogle Scholar
  16. 16.
    J. W. Lue, J. R. Miller, and L.J. Diesner, Appl. Phys. 51, 772 (1980).Google Scholar
  17. 17.
    S.W. VanSciver, Cryogenics 10 521 (1970).CrossRefGoogle Scholar
  18. 18.
    G. Bon-Mardion, C. Claudet, and P. Seyfert, Cryogenics 19 45 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    M. O. Hoenig, Cryogenics 20 Google Scholar
  20. 20.
    G. H. Morgan, J. Appl. Phys. 41 3673 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    K.P. Jungst and G. Ries, IEEE Trans. MAG 13, 527 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    B. J. Maddock and G. B. James, Proc. IEEE 115, 548 (1968).Google Scholar
  23. 23.
    M.N. Wilson, Rutherford Laboratory Report RHEL/M151 (1968).Google Scholar
  24. 24.
    M.N. Wilson, Rutherford Laboratory Internal Note SMR/1Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. N. Wilson
    • 1
  1. 1.Rutherford and Appleton LaboratoriesChilton, Didcot, OxfordshireEngland

Personalised recommendations