Reviews of Large Superconducting Machines

  • G. Bogner
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


The application of superconductivity to energy needs offers improvements in two areas. The performance of conventional components of the present energy systems is limited by the capability of conventional materials. By the use of superconductivity the capacity and efficiency of such components, e.g., electrical machines and cables, can considerably be improved. Superconductivity also opens new prospects for the solution of energy problems which cannot be realized on the basis of existing technologies, either because of technical or economical reasons. Examples for this kind of application are: inductive storage of energy, magnetic confinement for thermonuclear fusion and magnetohydrodynamic energy conversion.


Superconducting Magnet Energy Storage Inductive Energy Storage Linear Synchronous Motor Toroidal Field Coil Cable Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. T. Cole, et al “Design Report, 1979 Superconducting Accelerator”, Fermi National Accelerator Laboratory, May 1979.Google Scholar
  2. 2.
    “ISABELLE, a 400 x 400 GeV proton-proton colliding beam facility”, BNL 50718, January 1978.Google Scholar
  3. 3.
    “HERA proton-electron colliding beam project at DESY”, CERN Courier, May 1980, pp 99–104.Google Scholar
  4. 4.
    G.. Bogner, “Applied Superconductivity Activities at Siemens”, IEEE Trans. Magnetics, Vol. HAG-15, 824–827 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    C. Albrecht, “Experience with superconducting magnets for levitating the 17 ton test carrier EET at 150 km/h”, Proc. 6th Int. Conf. on Magnet Technology (MT-6), Bratislava, 177–182 (1977).Google Scholar
  6. 6.
    T. Ohtsuka and M. Iguchi, Proc. of the Internat. Seminar on Superconductive Magnetic Levitated Train,9–10 November, 1978, published December 1979.Google Scholar
  7. 7.
    F. H. Jones, “Wet magnetic separation of feebly magnetic minerals, 1. Description and theory”, 5th Int. Processing Congr., London, 717–721 (1960).Google Scholar
  8. 8.
    G. Bogner and D. Kullmann, “Electrical Machines with Superconductors. Part I. Fundamentals and possible applications; Part 2. dc machines; Part 3. Turbogenerators”, Siemens Forsch.-u. Entwickl.-Ber., Bd. 4, 305–309 and 368–372 (1975); Bd.5, 10–16 (1976).ADSGoogle Scholar
  9. 9.
    G. Bogner, “Large Scale Applications of Superconductivity” in Superconductor Applications: Squids and Machines, Plenum Press, New York (1977), pp 547–717.Google Scholar
  10. 10.
    A.D. Appleton and T. C. Bartram, “A place for superconducting dc machines in marine propulsion”, Proc. 7th Internat. Cryog. Engineering Conf., ICEC 7, London 4–7 July, 1978, pp 270–273.Google Scholar
  11. 11.
    H. O. Stevens, M. J. Superczynski, T. J. Doyle, J. H. Harrison, and H. Messinger, “Superconducting machinery for naval ship propulsion”, IEEE Trans. Magnetics, Vol. MAG-13, 269–274 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    G. Bogner, “Transmission of Electrical Energy by Superconducting Cables” in Superconducting Machines and Devices, Large Systems Applications, Plenum Press, New York (1974), pp 401–538.Google Scholar
  13. G. Bogner, P. Penczynski and F. Schmidt, “Development of a superconducting high power ac cable”, Siemens Forsch.-u. Entwickl.- Ber., Bd. 8, 1–7 (1979). “Superconducting high power ac cables: development of conductors and measurement of their ac losses”, ibid., 8–15. “Superconducting high power ac cable: development and performance of a single-phase termination”, ibid., 16–22.Google Scholar
  14. 14.
    E. B. Forsyth and R.J. Gibbs, “The Brookhaven superconducting cable test facility”, IEEE Trans. Magnetics, Vol. MAG-13, 172–176 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    P. Klaudy, “Super mit Wellrohr - Ein supraleitendes Kabel (Bauart Klaudy) im Netzversuch”, Energie, Jahrg. 32, 139–145 (1980).Google Scholar
  16. 16.
    B. J. Maddock and W. T. Norris, “Superconductivity in energy supply”, Proc. of 7th Internat. Cryogenic Engineering Conf., ICEC 7, London, 4–7 July, 1978, pp. 245–259.Google Scholar
  17. 17.
    T. C. Bartram, “A superconducting fault limiter: its construction and testing”. Superconducting Electrical Machines, 19–20 April, 1979, Oxford, England.Google Scholar
  18. 18.
    D. P. Ivanov, V. E. Keilin, B. A. Stavissky, and N. A. Chernoplekov, “Some results from the T7-Tokamak superconducting magnet test program”, IEEE Trans. Magnetics, Vol. MAG-15, 550–553 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    B. Kadomzew and G. Jelissejew, “Das Zeitalter der thermonuklearen Kraftwerke rückt immer näher”, Sowjetischer Export 2, 30–33 (1980).Google Scholar
  20. 20.
    “Fusion Technology Development, August 1979”, U.S. Department of Energy, DOE/ET-0116/1 UG-20, A through G.Google Scholar
  21. 21.
    J. Adam, et al., “Torus II Supra”, EUR-G.A-FG-1021, October 1979.Google Scholar
  22. 22.
    D. N. Gornish, “Superconductivity and cryogenics for mirror fusion”, 8th Internat. Gryog. Engineering Gonf., IGEG 8, Genova, 3–6 June, 1980, Paper No. 4G-1.Google Scholar
  23. 23.
    S. K. Singh, J. H. Murphy, M. A. Jonocko, H. E. Heller, D. G. Litz, and P. W. Ecjels, “Design of a 20 MJ superconducting ohmic-heating coil”, Proc. 8thSymp. on Eng. Probl. of Fusion Research, San Francisco, November 13–16, 1979, IEEE Pub. No. 79GH1441–5-NPS, pp. 774–780.Google Scholar
  24. 24.
    S. Shimamoto, T. Ando, T. Hiyama, H. Tsuji, K. Yoshida, E. Tada, M. Nis hi, K. Okuno, K. loizumi, andK. Yasukouchi, “Glus ter Test Facility Gonstruction and its Future Perspective”, Proc. 8th Symp. Eng. Probl. Fusion Research, San Francisco (1979), IEEE Pub. No. 79GH1441-SNPS, pp. 269–273.Google Scholar
  25. 25.
    P. Komarek, “Superconducting Magnets for Tokamaks”, 8th Intern. Gryog. Eng. Gonf., IGEG 8, Genova, 3–6 June, 1980, Paper No. 6G-1.Google Scholar
  26. 26.
    R. P. Smith, R. C. Niemann, M. R. Kraimer, and T. E. Zinneman, “Observation of voltage fluctuations in a superconducting magnet during MHD power generation”, IEEE Trans. Magnetics, Vol. MAG-15, 295–297 (1979).ADSCrossRefGoogle Scholar
  27. 27.
    P. G. Marston, “Superconducting magnets for magnetohydrodynamic power generation”, paper presented at the Electrochemical Society Meeting, May 7, 1979.Google Scholar
  28. 28.
    Y. Aijama, et al., “A large superconducting MHD magnet”, Proc. of the 5th Internat. Gryogenic Eng. Gonf., IGEG 5, Kyoto (1974), pp. 300–303.Google Scholar
  29. 29.
    R. W. Boom, B. G. Haimson, G. E. Mcintosh, H. A. Peterson, and W. G. Young, “Superconductive energy storage for large systems”, IEEE Trans. Magnetics, Vol. MAG-11, 475–481 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    W. V. Hassenzahl, “Will superconducting magnetic energy storage be used on electric utility systems?”, IEEE Trans. Magnetics, Vol. MAG-11, 482–488 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    N. Masuda, T. Shintomi, H. Sato, and A. Kabe, “Superconducting Energy Storage Magnets”, IEEE Trans. Magnetics, Vol. MAG-15, 318–321 (1979).ADSCrossRefGoogle Scholar
  32. 32.
    J. D. Rogers, H. J. Boenig, J. C. Bronson, D. B. Colyer, W. V. Hassenzahl, R. D. Turner, and R. I. Schermer, “30 MJ superconducting magnetic energy storage (SMES) unit for stabilizing an electric transmission system”, IEEE Trans. Magnetics, Vol. MAG-15, 820–823 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. Bogner
    • 1
  1. 1.Research Laboratories of Siemens AGErlangenWest Germany

Personalised recommendations