Superconducting Proximity Effect for In Situ and Model Layered Systems

  • D. K. Finnemore
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 68)


With the development of commercial scale fabrication techniques for in situ composites [1], there now appears to be a good chance that these materials will be well suited for large scale magnets in the 8 to 14 tesla range. The critical currents are above 104 A/cm2 at 14 tesla [2, 3, 4] and the strain tolerance is very attractive [3, 5]. Even at the present stage of development, these composites appear to be a good choice for dc or slowly ramped magnets.


Magnetic Field Dependence Strong Electron Phonon Interaction Superconducting Proximity Effect Laminar Junction prOximity Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Verhoeven, F. A. Schmidt, E. D. Gibson, J. E. Ostenson, and D. K. Finnemore, Appl. Phys. Lett. 35, 555 (1979);ADSCrossRefGoogle Scholar
  2. J. D. Verhoeven, E. D. Gibson, C. U. Owen, J. E. Ostenson, and D. K. Fiimemore, Appl. Phys. Lett. 35, 270 (1979).ADSCrossRefGoogle Scholar
  3. 2.
    D. K. Finnemore, J. D. Verhoeven, E. D. Gibson, and J. E. Ostenson, IEEE Trans, on Magn. MAG 15, 693 (1979).ADSCrossRefGoogle Scholar
  4. 3.
    J. L. Fihey, M. Neff, R. Roberge, M. C. Flemings, S. Foner and B. B. Schwartz, Appl. Phys. Lett. 35, 715 (1979).ADSCrossRefGoogle Scholar
  5. 4.
    J. Bevk, J. P. Harbison, F. Habbal, G. R. Wagner, and A. I. Braginski, Appl. Phys. Lett. 36, 85 (1980).ADSCrossRefGoogle Scholar
  6. 5.
    J. W. Ekin, IEEE Trans. Magn. MAG 15, 197 (1979).ADSCrossRefGoogle Scholar
  7. 6.
    P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).ADSCrossRefGoogle Scholar
  8. 7.
    J. Clarke, S. M. Freake, M. L. Rappaport, and T. L. Thorp, Sol. State Commun. 11, 689 (1972).ADSCrossRefGoogle Scholar
  9. 8.
    J. R. Toplicar and D. K. Finnemore, Phys. Rev. 16, 2072 (1977).ADSGoogle Scholar
  10. 9.
    W. L. McMillan, Phys. Rev. 175, 537 (1968).ADSCrossRefGoogle Scholar
  11. 10.
    M. P. Zaitlin, Phys. Rev. 18, 3298 (1978).ADSCrossRefGoogle Scholar
  12. 11.
    C. R. Spencer, P. Martinoli, E. D. Gibson, J. D. Verhoeven, and D. K. Finnemore, Phys. Rev. 18, 1216 (1978).ADSCrossRefGoogle Scholar
  13. 12.
    T. Y. Hsiang and D. K. Finnemore, Sol. State Commun. 33, 487 (1980); T. Y. Hsiang and D. K. Finnemore, Phys. Rev. (accepted).CrossRefGoogle Scholar
  14. 13.
    L. Dobrosavljevic and P. G. de Geiines, Sol. State Commun. 5, 177 (1967);ADSCrossRefGoogle Scholar
  15. L. Dobrosavljevic, C. Petipus-Depuis and R. Racek, Phys. Stat. Sol. 38, 159 (1970).ADSCrossRefGoogle Scholar
  16. 14.
    M. P. Zaiüin, Phys. Rev. 18, 3305 (1978).CrossRefGoogle Scholar
  17. 15.
    S.S. Shen, ICMC Conference at Brookhaven (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. K. Finnemore
    • 1
  1. 1.Ames Laboratory-USDOE and Department of PhysicsIowa State UniversityAmesUSA

Personalised recommendations